CLC number:
On-line Access: 2024-05-16
Received: 2024-01-10
Revision Accepted: 2024-03-18
Crosschecked: 0000-00-00
Cited: 0
Clicked: 11
Yiming WANG, Lijian ZUO. High-performance and multifunctional organic photovoltaic devices[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2400015
@article{title="High-performance and multifunctional organic photovoltaic devices",
author="Yiming WANG, Lijian ZUO",
journal="Journal of Zhejiang University Science A",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/jzus.A2400015"
}
%0 Journal Article
%T High-performance and multifunctional organic photovoltaic devices
%A Yiming WANG
%A Lijian ZUO
%J Journal of Zhejiang University SCIENCE A
%P
%@ 1673-565X
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/jzus.A2400015"
TY - JOUR
T1 - High-performance and multifunctional organic photovoltaic devices
A1 - Yiming WANG
A1 - Lijian ZUO
J0 - Journal of Zhejiang University Science A
SP -
EP -
%@ 1673-565X
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/jzus.A2400015"
Abstract: Organic photovoltaic devices (OPVs) are emerging as a promising renewable energy source for the future. Their unique advantages, such as semitransparency, light weight, superior flexibility, and low cost, enable a wide range of applications. However, compared to silicon-based photovoltaics, OPVs still face challenges for further improving their efficiency. Additionally, there is a need to explore their potential of multi-functionality for practical application in various scenarios. This review summarizes the recent achievements in optimizing device performance and enhancing power-conversion efficiency, particularly via tuning the intermolecular interaction to reduce the electron-vibration coupling and non-radiative charge recombination (denoted as the “dilution effect”). Moreover, the representative development of ultra-thin Ag transparent electrode-based OPVs with multi-functional capabilities (such as semitransparency, flexibility, stretchability, and better aesthetics) have also been covered. Therefore, this review aims to provide a broad landscape on the recent development of OPV and to unlock the full potential of OPVs .
Open peer comments: Debate/Discuss/Question/Opinion
<1>