CLC number:
On-line Access: 2024-02-06
Received: 2024-01-03
Revision Accepted: 2024-01-17
Crosschecked: 0000-00-00
Cited: 0
Clicked: 207
Dake ZHANG, Chengcheng ZHANG, Shenghua WANG, Wei SUN. Emerging applicability of two-dimensional boron for energy catalysis[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2400003
@article{title="Emerging applicability of two-dimensional boron for energy catalysis",
author="Dake ZHANG, Chengcheng ZHANG, Shenghua WANG, Wei SUN",
journal="Journal of Zhejiang University Science A",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/jzus.A2400003"
}
%0 Journal Article
%T Emerging applicability of two-dimensional boron for energy catalysis
%A Dake ZHANG
%A Chengcheng ZHANG
%A Shenghua WANG
%A Wei SUN
%J Journal of Zhejiang University SCIENCE A
%P
%@ 1673-565X
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/jzus.A2400003"
TY - JOUR
T1 - Emerging applicability of two-dimensional boron for energy catalysis
A1 - Dake ZHANG
A1 - Chengcheng ZHANG
A1 - Shenghua WANG
A1 - Wei SUN
J0 - Journal of Zhejiang University Science A
SP -
EP -
%@ 1673-565X
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/jzus.A2400003"
Abstract: Due to their unique physical and chemical properties, two-dimensional (2D) boron nanosheets have received tremendous research attention and demonstrated substantial value in electronic devices, biomedicine, and energy conversion. In the preparation of boron nanosheets, compared with the bottom-up synthesis predominantly employed for electronics, the top-down synthesis route offers more facile and scalable production. In this mini-review, we mainly discuss the recent advances in the synthesis of boron nanosheets using the top-down strategy and the relevant applications in energy catalysis. Finally, inspired by our recent works on the novel applications of 2D silicon, we put forward prospects for designing boron nanosheets, providing insights into developing viable techniques for high-performance heterogeneous catalysis.
Open peer comments: Debate/Discuss/Question/Opinion
<1>