CLC number: TM724
On-line Access: 2024-05-06
Received: 2022-12-26
Revision Accepted: 2024-05-06
Crosschecked: 2023-08-06
Cited: 0
Clicked: 394
Citations: Bibtex RefMan EndNote GB/T7714
Hany A. ATALLAH, Rasha Hussein AHMED, Adel B. ABDEL-RAHMAN. Novel design of a compact tunable dual band wireless power transfer (TDB-WPT) system for multiple WPT applications[J]. Frontiers of Information Technology & Electronic Engineering, 2024, 25(4): 616-628.
@article{title="Novel design of a compact tunable dual band wireless power transfer (TDB-WPT) system for multiple WPT applications",
author="Hany A. ATALLAH, Rasha Hussein AHMED, Adel B. ABDEL-RAHMAN",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="25",
number="4",
pages="616-628",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2200664"
}
%0 Journal Article
%T Novel design of a compact tunable dual band wireless power transfer (TDB-WPT) system for multiple WPT applications
%A Hany A. ATALLAH
%A Rasha Hussein AHMED
%A Adel B. ABDEL-RAHMAN
%J Frontiers of Information Technology & Electronic Engineering
%V 25
%N 4
%P 616-628
%@ 2095-9184
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2200664
TY - JOUR
T1 - Novel design of a compact tunable dual band wireless power transfer (TDB-WPT) system for multiple WPT applications
A1 - Hany A. ATALLAH
A1 - Rasha Hussein AHMED
A1 - Adel B. ABDEL-RAHMAN
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 25
IS - 4
SP - 616
EP - 628
%@ 2095-9184
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2200664
Abstract: In this study we present the design and realization of a tunable dual band wireless power transfer (TDB-WPT) coupled resonator system. The frequency response of the tunable band can be controlled using a surface-mounted varactor. The transmitter (Tx) and the receiver (Rx) circuits are symmetric. The top layer contains a feed line with an impedance of 50 Ω. Two identical half rings defected ground structures (HR-DGSs) are loaded on the bottom using a varactor diode. We propose a solution for restricted WPT systems working at a single band application according to the operating frequency. The effects of geometry, orientation, relative distance, and misalignments on the coupling coefficients were studied. To validate the simulation results, the proposed TDB-WPT system was fabricated and tested. The system occupied a space of 40 mm×40 mm. It can deliver power to the receiver with an average coupling efficiency of 98% at the tuned band from 817 to 1018 MHz and an efficiency of 95% at a fixed band of 1.6 GHz at a significant transmission distance of 22 mm. The results of the measurements accorded well with those of an equivalent model and the simulation.
[1]Abdel-Rahman A, Verma AK, Boutejdar A, et al., 2004. Compact stub type microstrip bandpass filter using defected ground plane. IEEE Microw Wirel Compon Lett, 14(4):136-138.
[2]Ahn D, Ghovanloo M, 2016. Optimal design of wireless power transmission links for millimeter-sized biomedical implants. IEEE Trans Biomed Circ Syst, 10(1):125-137.
[3]Atallah HA, Abdel-Rahman AB, Yoshitomi K, et al., 2016. Compact frequency reconfigurable filtennas using varactor loaded T-shaped and H-shaped resonators for cognitive radio applications. IET Microw Antenn Propag, 10(9):991-1001.
[4]Atallah HA, Huseein R, Abdel-Rahman AB, 2019. Novel and compact design of capacitively loaded C-shaped DGS resonators for dual band wireless power transfer (DB-WPT) systems. AEU-Int J Electron Commun, 100:95-105.
[5]Atallah HA, Hussein R, Abdel-Rahman AB, 2020. Compact coupled resonators for small size dual-frequency wireless power transfer (DF-WPT) systems. IET Microw Antenn Propag, 14(7):617-628.
[6]Atallah HA, El Negm Yousef MMA, Abdel-Rahman AB, 2021. Efficiency improvement of dual-band wireless power transfer (DB-WPT) system with U-shape resonator and capacitively loaded E-shape defected ground structure (DGS). Wirel Pers Commun, 119(3):2083-2091.
[7]Barakat A, Yoshitomi K, Pokharel RK, 2019. Design and implementation of dual-mode inductors for dual-band wireless power transfer systems. IEEE Trans Circ Syst II Expr Briefs, 66(8):1287-1291.
[8]Belo D, Correia R, Pereira F, et al., 2017. Dual band wireless power and data transfer for space-based sensors. Topical Workshop on Internet of Space, p.1-4.
[9]Dautov K, Hashmi M, Nauryzbayev G, et al., 2020. Recent advancements in defected ground structure-based near-field wireless power transfer systems. IEEE Access, 8:81298-81309.
[10]Dautov K, Hashmi M, Nauryzbayev G, et al., 2021. Compact multi-frequency system design for SWIPT applications. Int J RF Microw Comput Aid Eng, 31(6):e22632.
[11]del Prete M, Berra F, Costanzo A, et al., 2015. Exploitation of a dual-band cell phone antenna for near-field WPT. IEEE Wireless Power Transfer Conf, p.1-4.
[12]Fereshtian A, Ghalibafan J, 2020. Impedance matching and efficiency improvement of a dual-band wireless power transfer system using variable inductance and coupling method. AEU-Int J Electron Commun, 116:153085.
[13]Garnica J, Chinga RA, Lin J, 2013. Wireless power transmission: from far field to near field. Proc IEEE, 101(6):1321-1331.
[14]Hand TH, Cummer SA, 2010. Reconfigurable reflectarray using addressable metamaterials. IEEE Antenn Wirel Propag Lett, 9:70-74.
[15]Hekal S, Abdel-Rahman AB, Jia HT, et al., 2017. A novel technique for compact size wireless power transfer applications using defected ground structures. IEEE Trans Microw Theory Tech, 65(2):591-599.
[16]Hu H, Georgakopoulos SV, 2015. Wireless power transfer in human tissue via conformal strongly coupled magnetic resonance. IEEE Wireless Power Transfer Conf, p.1-4.
[17]Huang SY, Lee YH, 2009. A compact E-shaped patterned ground structure and its applications to tunable bandstop resonator. IEEE Trans Microw Theory Tech, 57(3):657-666.
[18]Huh J, Lee SW, Lee WY, et al., 2011. Narrow-width inductive power transfer system for online electrical vehicles. IEEE Trans Power Electron, 26(12):3666-3679.
[19]Imura T, Hori Y, 2011. Maximizing air gap and efficiency of magnetic resonant coupling for wireless power transfer using equivalent circuit and Neumann formula. IEEE Trans Ind Electron, 58(10):4746-4752.
[20]Jeshma TV, George B, 2020. MR sensor-based coil alignment sensing system for wirelessly charged EVs. IEEE Sens J, 20(10):5588-5596.
[21]Jolani F, Yu YQ, Chen ZZ, 2014. A planar magnetically coupled resonant wireless power transfer system using printed spiral coils. IEEE Antenn Wirel Propag Lett, 13:1648-1651.
[22]Kung ML, Lin KH, 2020. A dual-band wireless power transfer system with efficiency-boosting converter. IEEE Microw Wirel Compon Lett, 30(11):1108-1111.
[23]Kung ML, Chen FY, Lin KH, 2019. Near-field wireless power transfer system with efficiency tracking for dual-band applications. IEEE 8th Global Conf on Consumer Electronics, p.610-611.
[24]Kupreyev D, Dautov K, Hashmi M, et al., 2019. Design of a compact DGS based dual-band RF WPT system for low-power applications. 8th Asia-Pacific Conf on Antennas and Propagation, p.48-49.
[25]Lee WS, Park S, Lee JH, et al., 2019. Longitudinally misalignment-insensitive dual-band wireless power and data transfer systems for a position detection of fast-moving vehicles. IEEE Trans Antenn Propag, 67(8):5614-5622.
[26]Liu M, Chen MJ, 2019. Dual-band multi-receiver wireless power transfer: architecture, topology, and control. IEEE Applied Power Electronics Conf and Exposition, p.851-859.
[27]Liu Y, Jäntti R, 2006. A study towards enhanced reliability performance of remote control and monitoring application over commercial wireless communication networks. Int Conf on Wireless Communications, Networking and Mobile Computing, p.1-4.
[28]Minnaert B, Stevens N, 2018. Maximizing the power transfer for a mixed inductive and capacitive wireless power transfer system. IEEE Wireless Power Transfer Conf, p.1-4.
[29]Ohira T, 2017. The kQ product as viewed by an analog circuit engineer. IEEE Circ Syst Mag, 17(1):27-32.
[30]Saad MR, Tahar F, Chalise S, et al., 2018. High FoM dual band wireless power transfer using bow-tie defected ground structure resonators. IEEE Wireless Power Transfer Conf, p.1-4.
[31]Sharaf R, Abdel-Rahman AB, Abd El-Hameed AS, et al., 2019. A new compact dual-band wireless power transfer system using interlaced resonators. IEEE Microw Wirel Compon Lett, 29(7):498-500.
[32]Sun WX, Liu CL, Zhu JY, 2018. A remote controlled mobile robot based on wireless transmission. 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conf, p.2173-2176.
[33]Tahar F, Barakat A, Saad R, et al., 2017. Dual-band defected ground structures wireless power transfer system with independent external and inter resonator coupling. IEEE Trans Circ Syst II Expr Briefs, 64(12):1372-1376.
[34]Tahar F, Chalise S, Yoshitomi K, et al., 2018. Compact dual-band wireless power transfer using overlapped single loop defected ground structure. IEEE Wireless Power Transfer Conf, p.1-4.
[35]Verma S, Rano D, Malhotra S, et al., 2021. Measurements and characterization of a newly developed novel miniature WIPT system. IEEE Trans Instrum Meas, 70:2004211.
[36]Wang GX, Liu WT, Sivaprakasam M, et al., 2005. Design and analysis of an adaptive transcutaneous power telemetry for biomedical implants. IEEE Trans Circ Syst I Regul Pap, 52(10):2109-2117.
[37]Xu SH, Zhang H, Yao C, et al., 2019. Eigenvector lookup position detection method for wireless power transfer of electric vehicles. IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer, p.177-180.
[38]Yang CL, Chang CK, Lee SY, et al., 2017. Efficient four-coil wireless power transfer for deep brain stimulation. IEEE Trans Microw Theory Tech, 65(7):2496-2507.
Open peer comments: Debate/Discuss/Question/Opinion
<1>