
Tong et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2021 22(4):245-264 245

 

 

 

 

Development of electric construction machinery in China:  

a review of key technologies and future directions* 
 

Zhe-ming TONG†1,2, Jia-zhi MIAO2, Yuan-song LI3, Shui-guang TONG†‡1,2, Qian ZHANG4, Gui-rong TAN5 
1State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China 

2School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China 
3Hangcha Group Co., Ltd., Hangzhou 311305, China 

4China Academy of Machinery Science and Technology Group Co., Ltd., Beijing 100044, China 
5Guangxi Yuchai Machinery Group Co., Ltd., Yulin 537005, China 

†E-mail: tzm@zju.edu.cn; cetongsg@zju.edu.cn 

Received Jan. 5, 2021; Revision accepted Feb. 16, 2021; Crosschecked Mar. 11, 2021 

 

Abstract: The issues of energy shortage and environmental pollution have accelerated the electrification of construction ma-
chinery (CM) industry globally. In China, the amount of electric construction machinery (ECM) has been growing across the 
industry. The sales of ECM are estimated to reach 600 000 vehicles by the end of 2025, while the total demand for battery power 
will reach 60 GWh. However, the development of ECM still faces critical challenges including reliable power supply and energy 
distribution among various components. In this review, we primarily focus on important technological breakthroughs and the 
difficulties faced by the CM industry in China. An overview of ECM including classification and characteristics is given at the 
beginning. Next, the selection of key components such as the electric motor and the energy storage units, and the control strategy 
in the pure electric drive system are discussed. The characteristics of the hybrid electric drive system such as structure design and 
power matching are analyzed in detail. The battery management system (BMS) is critical to ensure appropriate battery health for 
reliable power supply. Here, we extensively review technical developments in various BMSs. In addition, we roughly estimate the 
national total of CM emissions and the potential environmental benefits of employing ECMs in China. Finally, we set out future 
research directions and industrial development of ECM. 
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1  Introduction 

 
As global energy shortage and environmental 

pollution become increasingly prominent (Tong et al., 
2021), many developed countries have planned bans 

on the sale of new petrol and diesel vehicles in favor 
of electric models. In China, a similar ban has also 
been put on the agenda by the Ministry of Industry 
and Information Technology. As a result of China’s 
rapid infrastructure development, construction ma-
chineries (CMs) (e.g. forklift, excavator, and crane) 
powered by fossil fuels have been widely used in 
many industries and have consumed a vast amount of 
energy, and significantly contributed to various envi-
ronmental issues in China over the decades (Lin et al., 
2017b; Tong ZM et al., 2019). In Table 1, CM sales 
and market share of the top 30 companies worldwide 
are summarized. Five Chinese CM manufacturers 
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(XCMG, SANY, Zoomlion, LiuGong, and Lonking) 
account for 16.3% of the global market, with total 
construction equipment sales reaching $33 billion. 
From 2000 to 2019, CM sales in China have been 
growing steadily (Fig. 1a). The sales volume of CM, 
including excavator, loader, crane, road roller, bull-
dozer, land leveler, and paver, from 2006 to 2019 is 
presented in Fig. 1b. As of 2019, the total number of 
CMs in China was 8.86 million. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Electrification of CMs offers many benefits in-
cluding emission reduction, decreased noise level, 
lowered operation cost, and improved safety. The 
energy sources for CMs have been gradually shifting 
from fossil fuels to clean and renewable energy. As 
battery technology has matured and costs have 
dropped, many manufacturers in developed countries 
have been developing and releasing electric and hy-
brid CM models (Table 2). For example, Volvo 
Construction Equipment (Volvo CE) started to focus 
on compact all-electric CMs without large power 
demand. They released several models of electric 
excavators (ECR25, EC55, and EC230) and wheel 
loaders (L25H) between 2019 and 2020. Doosan 
Bobcat announced its first fully battery-powered mini- 
excavator (E10e) in 2019 and entered the European 
and USA markets with success. Caterpillar has in-
troduced both all-electric and diesel-electric models 
in recent years, including the world’s first large-scale 
25-t all-electric excavator (323F Z-line) with a 
300 kWh battery pack, a diesel-electric wheel loader 
(988K XE) that utilizes a highly efficient generator- 
invertor-motor electric drive to replace the torque 
converter and transmission, and an electric load-haul- 
dump (R1700 XE LHD) for underground mining, 
bringing benefits including the need for less ventila-
tion infrastructure, emission reduction, less heat 
generation, and lower operating costs. Komatsu has 
followed the electrification trend in the CM industry 
closely and it has a long history in hybrid CM tech-
nologies. The company released the world’s first 
hybrid 20-t hydraulic excavator (PC200-8E0) back in 
2008. By the end of 2016, the global sales of Ko-
matsu’s hybrid CM had hit nearly 4000 units. Dif-
ferent from conventional hybrid systems, the Ko-
matsu hybrid electrical system consists of three main 
components: an electric generator motor, an electric 
swing motor generator, and an ultra-capacitor with 
inverter. In 2020, Komatsu launched a new all- 
electric mini excavator (PC30E-5) in the Japanese 
market based on its existing expertise of hybrid CM. 

In China, electric construction machinery 
(ECM) has been rapidly developed by major Chinese 
CM manufacturers since 2015. For example, XCMG 
has designed different types of CM, such as the elec-
tric forklift, electric loader, and electric excavator, 
and the usage cost of their electric excavator is 60% 
less than that of a traditional excavator. In 2019,  

Table 1  CM sales and market share of the top 30 com-
panies worldwide (KHL, 2020) 

No. Company Country 
CM sales 
(million 
dollars)

Market 
share 
(%)

1 Caterpillar USA 32 882 16.20

2 Komatsu Japan 23 298 11.50

3 John Deere USA 11 220 5.50

4 XCMG China 11 162 5.50

5 SANY China 10 956 5.40

6 Volvo Construction 
Equipment 

Sweden 9381 4.60

7 Hitachi Construction 
Machinery 

Japan 8989 4.40

8 Liebherr Germany 8565 4.20

9 Doosan Infracore Korea 6689 3.30

10 Zoomlion China 6270 3.10

11 Sandvik Mining and 
Rock Technology 

Sweden 5934 2.90

12 JCB UK 5500 2.70

13 Terex USA 4353 2.10

14 Epiroc Sweden 4181 2.10

15 Oshkosh Access 
Equipment (JLG) 

USA 4079 2.00

16 Metso Finland 3635 1.80

17 Kobelco Construction 
Machinery 

Japan 3371 1.70

18 Kubota Japan 2866 1.40

19 LiuGong China 2820 1.40

20 CNH Industrial Italy 2768 1.40

21 Sumitomo Heavy  
Industries 

Japan 2671 1.30

22 Hyundai Construction 
Equipment 

Korea 2450 1.20

23 Manitou France 2346 1.20

24 Wacker Neuson Germany 2131 1.10

25 Palfinger Austria 1966 1.00

26 Tadano Japan 1959 1.00

27 Manitowoc USA 1834 0.90

28 Lonking China 1812 0.90

29 Fayat Group France 1726 0.90

30 Hiab Finland 1513 0.70
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SANY proposed a pure electric port tractor that can 
be driven for 120 km on one charge. In 2020, Zoom-
lion produced the world’s first 25-t pure electric au-
tomobile crane, which uses a LiFePO4 battery. Liu-
Gong has applied quick-charge technology to CMs 
(electric loader and electric excavator), and their 
batteries can be charged to 80% capacity within 1 h. 
We have summarized the main ECM products from 
the top manufacturers in Table 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ECMs include electric excavators, electric wheel 

loaders, electric forklifts, electric bulldozers, electric 
cranes, and electric road rollers (Fig. 2). They are 
widely operated in various engineering applications 
and are critical for infrastructure development and 
manufacturing industry. The most common operating 
characteristic of an ECM is frequent starting and 
braking (e.g. the electric wheel loader and electric 
forklift) and the hauling of heavy cargo (e.g. electric 
excavator and electric forklift). Therefore, the recov-
ery of gravitational potential energy and swing brake 
energy is beneficial for achieving higher energy effi-
ciency for many kinds of CM (Filla, 2009; Ovrum and 
Bergh, 2015; Lin et al., 2017b). Lin et al. (2016) 
found that the motor-generator unit is more suitable 
for energy recovery from an excavator than is the 
accumulator-motor-generator unit. Wang et al. (2016) 
developed a model predictive controller (MPC) con-
trol method for saving the energy of the hybrid electric 
tracked bulldozer. Simulation technology is used to 
compare the relative performances of the dynamic 
programming method and the rule-based control 
method. Antonelli et al. (2017) designed an energy 
regeneration system (ERS) to recover the energy of 
rubber-tired gantry (RTG) cranes to an ultra-capacitor. 
Minav et al. (2012b) developed an energy regenera-
tion unit used in the lifting system of an electro- 
hydraulic forklift. The energy regeneration unit is 
combined with an electric servo motor and a hydrau-
lic pump. Compared to other kinds of CM, the zero- 
emission pure electric forklift is the best choice for 
indoor operations (Tong et al., 2018). In addition, it is  
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Fig. 1  CM sales and growth rate in China from 2000 to 2019 (a) and CM sales volume by CM type in China from 2006 to 
2019 (b) (data source: China Construction Machinery Association) 

Table 2  Main ECM products (include hybrid) from top 
global CM manufacturers 

Company Main ECM product (include hybrid) 

Caterpillar (1) 323F Z-line all-electric excavator; (2) 
R1700 XE LHD; (3) 988K XE electric 
loader; (4) D6 XE electric dozer 

Komatsu (1) HB205-2/HB215LC-2, HB335-3/ 
HB365-3 hybrid excavator; (2) PC30E-5 
mini all-electric excavator 

Volvo (1) EC55, EC230, and ECR25 electric crawler 
excavators; (2) L25H electric loader 

Doosan 
Bobcat 

E10e electric mini-excavator 

XCMG (1) XE series electric excavator; (2) XC9 
series electric loader; (3) XCT25-EV  
electric crane; (4) XCB series electric 
forklift truck 

SANY SY16C electric excavator 

Zoomlion (1) ZTC250N-EV electric automobile crane; 
(2) FB series electric forklift truck 

LiuGong (1) 856H-EV electric loader; (2) 906E-EV 
and 922F-EV electric excavators 

Hangcha A, AE, X, and XC series electric forklift 
trucks 
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also important to note the customized design of ECM 
for special engineering projects. 

Electrification has been widely applied to pas-
senger vehicles (Tie and Tan, 2013; Xiong et al., 
2014) and has been shown capable of reducing emis-
sions significantly without sacrificing performance. 
The experience gained from the automotive industry 
can be utilized to accelerate the development of 
ECMs. Nowadays, CMs can be used in various oper-
ating environments. However, the ECM has still only 
just entered the exploratory stage. We summarize the 
most significant differences between the utilization of 
CM equipment and passenger vehicles: 

1. Application scenarios: CM is usually operated 
in hazardous environments, including hot and humid 
environments, alpine areas, and dirty and dusty en-
vironments. These conditions require that both the 
electrical system and power source have a robust and 
adaptive capacity. In contrast, passenger vehicles 
typically are operated under more favorable circum-
stances, with comparatively simple requirements for 
the electrical system and battery (He and Jiang, 2018). 

2. Operating conditions: In contrast with electric 
vehicles, ECMs (e.g. the dump truck, tractor, and 
mine truck) require a significantly greater amount of 
power due to their large volume, heavy weight, and 
extreme load. Further, CM has an extremely broad 
range of power requirements depending on its  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

operating state (Wang et al., 2017). This means CM 
needs a robust energy management system to ensure 
stable energy output and rapid shift between different 
operating modes. CM is focused on load capability 
whereas the focus of the passenger vehicle is on  
mobility. 

3. Mechanical construction: CM has more 
components and thus has more complicated structures 
than passenger vehicles and thus has additional major 
engineering requirements in addition to being driven. 
For example, in contrast to passenger vehicles, the 
forklift truck has an extra lifting system, which usu-
ally consists of a forklift mast, a heavy fork, and a 
hydraulic system. The hydraulic system contains the 
components of the reversing valve, pump, and pipe. 
Furthermore, the excavator has a more complicated 
lifting mechanism that combines the boom, bucket 
rod, rocker, connecting rod, bucket, and oil cylinder. 
To meet its engineering requirements, a rotary system 
is also required based on the rotary motor, reversing 
valve, and pipe for the excavator. 

As mentioned previously, there are still many 
unsolved technological problems in the development 
of ECMs, namely: (1) structural design of the electric 
system; (2) matching of power parameters; (3) energy 
distribution and recovery; (4) battery management. 
This paper aims at providing a comprehensive review 
of recent progress in ECM development in China and 

Fig. 2  Typical ECM types 
(a) Electric excavator; (b) Electric wheel loader; (c) Electric forklift truck; (d) Electric bulldozer; (e) Electric automobile crane; 
(f) Electric road roller 
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pointing out the benefits and challenges as the ECM 
market grows. The paper is divided into six sections 
and is organized as follows: Section 2 discusses the 
characteristics and key technologies of the pure elec-
tric drive system (PEDS). Section 3 describes the 
structure and power matching technology of the hy-
brid electric drive system (HEDS). Section 4 intro-
duces the battery management system (BMS) and 
mainly focuses on battery prognostics and thermal 
management. Section 5 discusses the cost-benefit of 
ECM. Section 6 summarizes the current development 
of ECM and points out the challenges for future  
research. 
 
 
2  Pure electric drive system (PEDS) 

2.1  Characteristics of pure electric construction 
machinery (PECM) 

The internal combustion engine (ICE) is re-
placed by an electric motor in PEDS, which makes the 
operation of PECM very smooth, with less noise and 
vibration compared with traditional-fuel construction 
machinery (TFCM) (Lin et al., 2020). Since PECM 
uses only electric energy as its power source, it can 
realize zero-emission operation. It has therefore been 
gradually applied to CMs such as those in forklift 
trucks and cranes. PECMs are especially welcome in 
indoor places where there are stringent requirements 
for emission and noise. 

PEDS consists of two critical components: the 
energy storage unit (ESU) and the electric motor. 
Their functions correspond to the fuel tank and engine 
in the TFCM: (1) a store and supply for the energy 
source and (2) a drive for the CM. The key role in the 
ESU of TFCM is to monitor the state of fuel (e.g. 
temperature and flow conditions) (Cao et al., 2014). 
There are various types of energy storage units in 
PECM including a lead-acid battery, a supercapacitor, 
a flywheel or a lithium-ion battery (Hannan et al., 
2017).  

 
 
 
 
 
 
 
 

For the power unit, the engine of a TFCM sup-
plies power by turning chemical energy into me-
chanical energy. Fossil fuel is atomized and ignited in 
the combustion zone; the piston is pushed by com-
bustion pressure, and its reciprocating force is trans-
formed into rotary power by the crankshaft 
(Mourelatos, 2001). Energy is therefore wasted in 
overcoming friction and in the generation of noise and 
vibration (Miao et al., 2017; Tong SG et al., 2019). In 
comparison, the electric motor of PECM provides 
power by converting electric energy to mechanical 
energy (Ferreira and de Almeida, 2018). The rotor of 
the electric motor is driven by electromagnetic forces, 
and thus the electric motor can output rotary power. 
The maintenance cost of the electric motor is lower 
than that of ICE due to its simpler structure. In con-
trast to the engine, the electric motor produces less 
noise and vibration, and it can be smoothly operated 
with high efficiency. However, for some electric 
motors there still exist issues of high cost or low  
reliability. 

2.1.1  Energy storage unit (ESU) 

The ESU is significant as it ensures a reliable 
power output in CM. The classification of various 
types of ESUs is shown in Fig. 3 and these are widely 
applied in various CM applications. The most popular 
ESU includes fuel batteries (Hosseinzadeh et al., 
2013), lithium batteries (Ge et al., 2018; Paul et al., 
2020), a flywheel (Li et al., 2020), and an ultra- 
capacitor (Conte et al., 2014). The primary charac-
teristics of several kinds of energy sources are in-
cluded in Table 3 and classified in Fig. 4. Lithium 
batteries have excellent specific energy and energy 
density, which benefit the lightweight design of CM. 
In contrast, other kinds of units, like those powered by 
an ultra-capacitor, need a larger space and greater 
weight to realize the same level of energy supply. 
Considering the power demands of the different 
components in the system and their production costs, 
it is appropriate to combine lithium batteries with  
 

 
 
 
 
 
 
 

Table 3  Key characteristics of commonly used ESUs 

Performance  
indicator 

Specific power 
(W/kg) 

Specific energy 
(Wh/kg) 

Energy density 
(Wh/L) 

Lifespan 
(cycle) 

Security 
evaluation 

Efficiency 
(%) 

Lead-acid battery 75–300 30–50 50–80 500–1500 Good <80 

Flywheel 400–1500 10–30 20–80 20 000 Bad ≤96 

Ultra-capacitor 500–5000 2.5–5.5 35 100 000 Good ≤95 

Lithium battery 250–340 75–200 200–500 2000–10 000 Good ≤95 
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other kinds of ESUs (Fig. 3) to develop high- 
performance and reliable CM (Hsieh et al., 2016). Yi 
et al. (2018) utilized both fuel cells and batteries to 
develop ESU to support the electric motor of, for 
example, an excavator. Fuel cells have also been used 
as the main power source, and batteries have been 
used as an auxiliary power source to supplement 
them. Hosseinzadeh et al. (2013) adopted a hybrid  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ESU, including the proton exchange membrane fuel 
cell and a lead-acid battery, to optimize the perfor-
mance of a forklift truck. 

2.1.2  Electric motor 

Electric motors can be broadly classified as di-
rect current (DC) or alternating current (AC). Their 
more detailed classification is described in Fig. 5. 
Commonly used electric motors include the DC mo-
tor, the permanent magnet synchronous motor, the 
reluctance synchronous motor, and the asynchronous 
motor. However, the DC motor is not suitable for CM 
applications due to its complicated structure and un-
satisfactory reliability. The reluctance synchronous 
motor can be applied to CM due to its low cost, high 
efficiency, and high torque density, and is fabricated 
without rare-earth materials (Boglietti et al., 2006). 
However, the noise and vibration caused by torque 
ripple and radial distortion limit the application of the 
reluctance synchronous motor. At present, asyn-
chronous motors and permanent magnet synchronous 
motors are widely used in CMs. The asynchronous 
motor has a simple structure and thus achieves good 
reliability and low cost. The permanent magnet  

Fig. 4  Specific power vs specific energy characteristics 
for several normal energy sources. Reprinted from 
(Kumar and Jain, 2014), Copyright 2014, with permis-
sion from Elsevier 

Fig. 3  Classification of ESU according to mechanism and composition materials 
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synchronous motor can only be utilized in a limited 
space due to its high-power density and torque density 
(Jacobs et al., 2009). One of the most important con-
siderations in PEDS is to select a suitable type of 
electric motor that can support the entire electric 
system and operating conditions (Minav et al., 
2012a). Ge et al. (2017) found that consumed power 
noticeably declined (from 2.05 kW to 0.70 kW) when 
the variable-frequency electric motor replaced the 
constant-speed electric motor, indicating the signifi-
cance of selecting an appropriate electric motor for 
lowering energy consumption. 

2.2  Structures and control strategy of PEDS 

The PEDS combines multiple ESUs, an electric 
motor, and many components such as pumps and 
valves to achieve complicated functions. In this sec-
tion, the pure electric hydraulic excavator is used to 
represent PECM in the examination of the structure 
and control strategy of PEDS. In Fig. 6, the PEDS of 
the pure electric hydraulic excavator is depicted in  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

more detail. The main power is output from an elec-
tric motor and the variable pump is driven by the 
electric motor. The electric energy produced is con-
verted to hydraulic energy through the electric motor 
and variable pump in this process. The mechanisms of 
the hydraulic excavator are driven by the hydraulic 
motor and controlled by multiple plunger pumps and 
reversing valves. Lin et al. (2017a) proposed a 
two-level idle speed control system that automatically 
controls the speed of the electric motor. The energy 
consumption saved is about 36.06% compared with a 
hydraulic excavator without idle speed control. 

The control strategy aims to achieve good per-
formance in fuel economy, emissions, cost, and driv-
ability (Enang and Bannister, 2017). A classification 
of the commonly used control strategies is provided  
in Fig. 7 (p.253). In contrast to the optimization- 
based method, the rule-based method is simple to 
develop and has low computing cost (He and Jiang, 
2018). Hosseinzadeh et al. (2013) utilized the Light, 
Fast, and Modifiable (LFM) simulation software to  

Fig. 5  Classification of the electric motor according to mechanism and composition materials 
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investigate the performance of two rule-based control 
strategies in an electric forklift. The ESU of the fork-
lift was combined with a polymer electrolyte mem-
brane (PEM) fuel cell and a lead-acid battery. The 
first strategy was based on average power consump-
tion, while the second was based on maximum  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
efficiency. The results showed that the first strategy 
had better performance due to its stable operating 
conditions. Ambühl et al. (2010) presented an explicit 
optimal control strategy for parallel hybrid electric 
powertrains. This rule-based map was used to express 
optimal control. Krasucki et al. (2009) proposed a  

Fig. 6  PEDS of a pure electric hydraulic excavator 
(a) Structure of a pure electric hydraulic crawler excavator; (b) System composition of a pure electric hydraulic crawler excavator 
(reprinted from (Lin et al., 2020), Copyright 2020, with permission from Elsevier); (c) Structure of PEDS (reprinted from (Ge et 
al., 2017), Copyright 2017, with permission from Elsevier). EMC: electric motor controller; VCU: vehicle control unit; De-
scriptions of the variables in Fig. 6c refer to Ge et al. (2017) 
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two-level control method for a vehicle-mounted aerial 
work platform. The first layer was developed using 
the local classic proportional-integral-derivative (PID) 
controllers, while the second was based on a fuzzy 
logic controller. Sun et al. (2011) designed a new 
control algorithm that combined a logic threshold 
method and parameter optimization technology for 
heavy hybrid vehicles. The results indicated that the 
proposed algorithm had excellent performance and 
fuel economy. 

2.3  Energy regeneration system (ERS) 

Some CMs such as electric forklifts and electric 
excavators are usually equipped with extremely 
heavy mechanical structures (i.e. the boom and fork). 
The machine needs to supply extra energy to ensure 
the heaviest mechanical structures descend at an ap-
propriate speed. The gravitational potential energy of 
the heavy mechanisms (sometimes also including 
heavy goods) can be recovered and stored in an en-
ergy storage device, which is usually refers to a hy-
draulic accumulator or ultra-capacitor. In this way, 
the amount of wasted energy is decreased, and effi-
ciency is improved accordingly. Note that the de-
scending speed of mechanisms needs to be further 
limited to ensure the efficiency of ERS. The control 
strategy needs to be improved to ensure the compati-
bility between the ESU and ERS and the reasonable 
distribution of any recovered energy. In addition, the 
energy from the braking process of the swing system 
also can be reserved by the ERS. This kind of  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

energy-saving strategy has already been used in ve-
hicles (Itani et al., 2016). The classical two-braking 
control strategy for recycling brake energy is shown 
in Fig. 8. A problem faced by current energy recovery 
technology based on hydraulic accumulators is the 
release of the recovered energy (Tong et al., 2020c). 
Due to the high-power density of the accumulator and 
the fast energy release rate, it is usually necessary to 
control the energy released using a control element. 
Commonly used control components are control 
valves, bidirectional variable pumps, balance cylin-
ders, and hydraulic transformers.  

It has been shown that the recovery efficiency of 
ERS in CM is usually between about 20% and 60% 
(Lin et al., 2017b), and is determined by the system 
structure and type of ERS (i.e. electric ERS, hydraulic 
ERS, and mechanical ERS), recovery strategy, oper-
ating conditions, and size and distribution of the los-
ing energy. In (Lin et al., 2017b), it was reported that 
262 441-J gravitational potential energy can in theory 
be recovered from the potential energy of the boom in 
a 20-t hydraulic excavator. Chen et al. (2019) de-
signed a novel potential energy regeneration system 
(PERS) that combines a hydraulic accumulator and 
valve-motor-generator for a hybrid hydraulic exca-
vator. The simulation results show that the recovery 
efficiency of PERS is up to 57.96%. Zhang et al. 
(2013) investigated the recovery of braking energy of 
a fuel-cell hybrid electric bus. They found that 4.4-MJ 
braking energy, which takes up 13.7% of the overall 
energy consumed by the system, can be recovered  

Fig. 7  Classification of control strategy for electric vehicles (DP: dynamic programming) 
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when the bus is running on the typical driving cycle of 
a bus in a Chinese city. 

 
 

3  Hybrid electric drive system (HEDS) 

3.1  Structures and control strategy of HEDS 

HEDS combines different kinds of power sys-
tems to complete the operating demand for CM with 
improved overall performance. Fuel consumption and 
exhaust gas emissions of CM can be decreased by the 
adoption of HEDS (Hannan et al., 2014; Tong et al., 
2020a). Currently there are three mainstream types of 
HEDS (Enang and Bannister, 2017): series, parallel, 
and hybrid, as shown in Fig. 9. In the series structure 
HEDS, power is transmitted to the mechanical drive 
unit only by the electric motor, offering the advantage 
of both high fuel efficiency and easy operation. 
However, the control strategy of the series structure is 
difficult to develop for optimal efficiency of the entire 
system (He and Jiang, 2018). The parallel structure 
has a dynamic coupling device that integrates the 
power from the ICE with that from the electric motor. 
The electric motor is used as the auxiliary power 
device, and the battery pack is used as its energy 
storage element (Conte et al., 2014; Lü et al., 2018; 
Tong et al., 2020b). The effective switching of the 
power supply modes between the different working 
conditions makes the engine working in the most  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

efficient and economical way possible. As shown in 
Fig. 9c, the hybrid structure is designed on the series 
structure and parallel structure (Wang et al., 2015), 
making the system a more flexible strategy. 

Fig. 8  Two-braking control strategy used in vehicles. Reprinted from (Itani et al., 2016), Copyright 2016, with permis-
sion from Elsevier. ECE: Economic Commission for Europe; ABS: anti-lock braking system; IPMSM: interior per-
manent magnet synchronous motor; HESS: hybrid energy storage system 

Fig. 9  Structures of mainstream hybrid power systems
(a) Series structure; (b) Parallel structure; (c) Hybrid structure
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3.2  Parameter matching technology of hybrid 
electric construction machinery (HECM) 

The basic principle of the hybrid power system is 
to reduce fuel consumption through the combination 
of electric motors and ICEs (Wang et al., 2013). The 
parameter matching between the different power units 
has a significant influence on power performance, 
fuel consumption, and exhaust gas emissions of CM 
(Xu et al., 2018). The energy flow directions in the 
HECM are shown in Fig. 10. 

Parameter matching is one of the most critical 
issues in the research on HECM (Song et al., 2020). A 
parameter matching strategy should comprehensively 
consider the changes of the external load, as well as 
the characteristics of each component in the power 
system (Sun and Jing, 2010). In recent years, simula-
tion technology has become the most efficient method 
for addressing parameter matching. Li et al. (2013) 
proposed a new parameter matching strategy for im-
proving the performance of the hybrid power loader. 
The optimal parameters were discovered through the 
development of an objective function and a constraint 
function. The performance of the new strategy is 
demonstrated by using the MATLAB/Simulink 
software. Ke et al. (2020) established a state-of- 
charge estimation strategy of ESU for parameter 
matching of an electric excavator. Sun (2020) de-
veloped a comprehensive model combined with 19 
components for a hybrid electric vehicle (HEV) by 
utilizing the advanced vehicle simulator (ADVISOR) 
and MATLAB/Simulink software. The critical com-
ponents, including engine, electric motor, battery, and 
transmission, were selected according to historical 
experience. Parameter matching was realized by 
considering the power requirements of the system and 
then optimized by a multi-objective cellular genetic 
algorithm. Wang (2020) proposed a new strategy of 
parameter matching for an electric vehicle according 
to its power requirements. The ESUs of the vehicle 
consist of fuel cell, battery, and ultra-capacitor. Xiao 
(2020) optimized the system parameters of the 
plug-in hybrid electric vehicle (PHEV) by forward 
simulation. The power requirements of these systems 
are shown in Fig. 11. 

The continuing development of hybrid CM 
needs to address the following key issues:  

1. The optimal distribution of energy and rea-
sonable parameter matching of the hybrid power 

system. In contrast to passenger vehicles, the working 
conditions of CM are more complicated, which makes 
the power output mode of hybrid power and control 
strategy more complicated and more demanding. 
Besides, the power system of HECM is more com-
plicated compared with PECM, which makes param-
eter matching very difficult.  

2. Reducing the cost of the hybrid system. The 
use of hybrid power systems on CM greatly increases 
the cost, which also increases the difficulty of pro-
moting hybrid products. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4  Battery management system (BMS) 
 
The BMS used for PEDS and HEDS has the 

same design. For ECM, it is important to ensure a 
reliable energy supply. In recent years, the battery has 
gradually replaced other kinds of energy sources and 
been applied to CM, since the battery has high energy 
density and a long lifespan. However, the electro-
chemical performance of the battery will decrease as 
defects are generated after many charge-discharge 
cycles (Xiong et al., 2018). Additionally, many stress 
factors (e.g. temperature, depth of discharge (DOD), 
and charge-discharge rate) that alter the transport rate 

Fig. 10  Energy flow directions in the hybrid system 

Fig. 11  Classification of system power requirements for 
PHEV 
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of lithium ions and the rates of electrochemical reac-
tions will affect lifespan significantly (Hu et al., 
2020). Extreme environments such as low-temperature 
cold storage can lead to serious consequences (e.g. the 
CM cannot be started or loses power when cargo is 
carried). Therefore, the health of the battery needs to 
be monitored for reliable energy supply, and timely 
maintenance, a favorable environment, and a rea-
sonable charge-discharge strategy are also required to 
prolong the lifespan of the battery. The BMS can 
realize those functions and its structure is depicted in 
Fig. 12. 

4.1  Prognostics of battery operating states 

As one of the most significant functions of BMS, 
battery health states (e.g. remaining useful life (RUL), 
state of health (SOH), and state of charge (SOC)) 
prognostics have attracted the attention of research-
ers. The electrochemical performance of batteries has 
increased rapidly and their cost is decreasing with the 
appearance of new materials (Zhang WD et al., 2019; 
Zhang QG et al., 2020). In 2007 (Saha and Goebel, 
2007), a battery would come to the end of its life 
within 168 cycles under a 0.75–1-C charge-discharge 
rate. In contrast, today the capacity of a battery only 
declines 4% after 1000 cycles with a 3.6-C charge- 
discharge rate (Severson et al., 2019). In practice, 
researchers usually develop an accelerated aging test 
to shorten test cycles as battery life is significantly 
affected by the operating parameters. In recent years, 
several kinds of algorithms, including the model- 
based method, data-driven method, and hybrid 
method, have been proposed to estimate health states. 
The advantages and disadvantages of popular algo-
rithms are summarized in Table 4. Note that the 
computational cost of the models is being gradually  
 

 
 
 
 
 
 
 
 
 
 
 
 

reduced due to information technology continuing to 
evolve rapidly, such as 5G. Based on advanced in-
formation technology, BMS can estimate battery 
states efficiently and even download a large amount 
of battery data from a cloud data center to develop a 
more precise model; all computation can be finished 
within an acceptable period. In recent years, machine 
learning-based algorithms for prediction of battery 
performance have become more and more popular. 
The artificial neural networks such as long-short term 
memory (LSTM) neural network (Zhang YZ et al., 
2018), feed forward neural network (Wu et al., 2016), 
and convolutional neural network (Ma et al., 2019) 
have been widely applied to predict battery operating 
states. These methods can accurately model battery 
behavior and exhibit excellent adaptability since a 
large amount of data is available. In addition, better 
prediction performance will be obtained when the 
artificial neural network is combined with other kinds 
of methods (Yang et al., 2020; Ma et al., 2021). 

At present, there are still many issues for battery 
prognostics in CM:  

1. Data acquisition. Many researchers use battery 
data from public datasets to develop prediction algo-
rithms, but those are not suitable for CM applications. 
In addition, most battery data is collected in a labor-
atory environment (e.g. constant charge-discharge 
rate and constant temperature), which does not accu-
rately reflect the actual application environment.  

2. Generalization ability. It is important to apply 
the appropriate diagnostic algorithm to differing op-
erating conditions and for various kinds of batteries. 
However, most research focuses on a few conditions 
and one or two types of batteries. In a recent work, 
Severson et al. (2019) developed a data-driven esti-
mation method based on a comprehensive dataset that  
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12  Structure and functions of a typical BMS 



Tong et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2021 22(4):245-264 257

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

included 124 commercial lithium-ion batteries. The 
batteries were operated at different charge-discharge 
rates, and their lifespans ranged from 150 to 2300 
cycles.  

3. Evaluation criterion. The performance indi-
cators of algorithms can be classified as accuracy, 
robustness, generalization ability, and computational 
costs (including time costs and hardware require-
ments). For precision evaluation, indicators such as 
mean absolute error (MAE), mean square error 
(MSE), and root mean square error (RMSE) are 
widely utilized. For other performance indicators, 
however, there are no available quantitative criteria to 
evaluate prediction algorithms. Therefore, it is diffi-
cult to identify the comprehensive properties of the 
model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2  Thermal management system (TMS) 
 
An appropriate environment can be established 

by the TMS to maintain the highest performance of 
batteries no matter where the CM is operated. In 
contrast to automobiles, CM is more likely to be used 
in high-temperature or extremely cold environments. 
Batteries will be especially affected by abnormal 
temperatures without the TMS. The TMS can be 
divided into four categories, i.e. the air-based method, 
liquid-based method, material-based method, and 
fusion method, and a TMS also can be passive or 
active (Rao and Wang, 2011). The schemes for 
air-based and liquid-based methods are shown in 
Fig. 13. The material-based method uses the charac-
teristics of phase change materials (PCMs), which  

Table 4  Advantages and disadvantages of popular algorithms for battery state prediction 

Algorithm Advantage Disadvantage 
Model-based Mechanistic (Ning  

et al., 2006) 
(1) Based on internal electrochemical  

reactions; (2) High precision and good 
generalization ability 

(1) Requires technical knowledge; (2) 
Hard to identify the proper model 
parameters; (3) High computational 
costs 

Equivalent circuit 
(Saha et al., 2009) 

The degradation mechanism is  
considered 

(1) Requires technical knowledge; (2) 
Electrochemical impedance spectrum 
can affect lifespan of battery 

Empirical (Bloom  
et al., 2001) 

(1) Simple to develop; (2) Wide  
application 

(1) Low generalization ability; (2) Re-
quires updates to model parameters 

Fused (Guha and 
Patra, 2018) 

(1) Extracts more information; (2)  
Applicable to early estimation 

(1) Introduces more error sources; (2) 
More complex failure criterion 

Data-driven Naive Bayes (Ng  
et al., 2014) 

(1) Simple to establish; (2) Good  
tolerance for missing data 

Adopts attribute independence assump-
tion which is often invalid 

Support vector  
machine (Nuhic  
et al., 2013) 

Performs well in nonlinear, small  
sample data problems 

(1) Lack of sparseness; (2) Limited by 
Mercer theorem when selecting the 
kernel function 

Relevance vector 
machine (Liu et  
al., 2015) 

(1) Good sparseness; (2) Can solve 
overfitting or underfitting; (3) No 
limitation of Mercer theorem 

(1) Poor computational efficiency for 
large sample data; (2) Inapplicable to 
long-period estimation 

Gaussian process 
regression (Liu  
et al., 2013) 

Performs well in small size and 
high-dimension data 

(1) Poor computational efficiency for 
large data; (2) Lack of sparseness 

Artificial neural 
network (Zhang  
YZ et al., 2018) 

(1) Excellent learning ability and tracea-
bility for nonlinear data; (2) Integrates 
various kinds of information 

(1) Based on sufficient training data; (2) 
Difficult to balance performance and 
computational costs 

Wiener process 
(Zhang ZX et al., 
2018) 

(1) Performs well in the non-monotonic 
process problem; (2) Distribution of 
the first hitting time can be formulated

(1) Poor performance for heterogeneous 
and nonlinear data; (2) Based on the 
property of Markov 

Entropy analysis  
(Hu et al., 2016) 

(1) Easy to implement online estimation; 
(2) Effective features extraction 

Requires sufficient and high-quality 
data 

Hybrid (Dong et al., 2014) (1) Requires less data compared with 
data-driven methods; (2) More flexible 
compared with model-based methods 

(1) Increases the complexity of the 
model; (2) Introduces more error 
sources 
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have high conductivity for high temperature and low 
conductivity for low temperature. Therefore, the 
PCM can be used for either dissipating heat or pre-
serving the heat of the battery pack. 

The scheme for the TMS will be affected by 
many factors such as the type of battery (cylindric, 
prismatic, elliptic) and the structure of CM (Al-Hallaj 
and Selman, 2002). The TMS used in a five-chair 
electric vehicle is depicted in Fig. 14. The system 
utilizes a heat pump to develop a cooling and heating 
loop. Zolot et al. (2002) developed a parallel airflow 
TMS for cooling the battery pack in a hybrid vehicle. 
Wang et al. (2014) investigated the influence of cell 
distribution and fan locations. The results showed that 
the best cooling performance was realized when the 
fan was located on top of the batteries. 

 
 

5  Environmental benefits of ECM in China 
 
According to the U.S. Energy Information Ad-

ministration (EIA, 2017), the construction industry is 
responsible for 11% of energy-related carbon emis-
sions globally. Most CMs are diesel-powered, and 
emit significantly more pollutants than those from 
automobiles, including particulate matter (PM),  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

nitrogen oxides (NOx), and hydrocarbons (HC). To 
accomplish reductions in emissions, China has been 
continuously enacting stricter emission standards for 
non-road CM since they were first issued in 2007. The 
new China IV emission standard for non-road CMs 
will be officially implemented in 2022. Furthermore, 
as many countries have policies for banning the sale 
of fossil-fuel powered vehicles in the future, it is also 
likely that countries will be planning to ban the sale of 
CM with conventional fuel at some point. As such, 
electrification of CM has already become an inevita-
ble technological trend because of its massive envi-
ronmental benefits. To provide reference for gov-
ernment and CM manufacturers, the CM emissions in 
China (2016–2020 and 2030) are roughly estimated 
here based on the emission factors of each pollutant 
(PM, NOx, HC) and annual fuel consumptions. We 
employed average non-road CM emission factors to 
estimate annual emissions according to the non-road 
emission inventory guidelines released by the Minis-
try of Ecology and Environment of the People’s Re-
public of China (MEE) (MEE, 2019). The fuel con-
sumption rate was obtained based on the testing data 
of different types of CMs under typical operating 
modes (Hu et al., 2019). The estimated national total 
emissions of each pollutant are shown in Fig. 15. In  

Fig. 13  Schemes for air-based and liquid-based TMSs 
(a) Passive air cooling; (b) Passive air cooling or heating; (c) Active air cooling or heating; (d) Passive liquid cooling; (e) Active 
moderate cooling or heating; (f) Active cooling at a high temperature or heating at a cold temperature 
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comparison with the emission data released in the 
China vehicle environmental management annual 
report by MEE, our predictions are in decent agree-
ment with differences less than 20%. For example, in 
2019, the national total emissions for HC, NOx, and 
PM were 140 169 t, 1 412 525 t, and 90 458 t, respec-
tively. Considerable decreases in all three pollutants  

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

are observed from 2016 to 2020 due to the imple-
mentation of exhaust after-treatment technologies 
such as diesel oxidation catalysts (DOCs), diesel 
particulate filters (DPFs), and selective catalytic re-
duction (SCR) catalysts. Additionally, we have pre-
dicted the total emission in 2030 based on the as-
sumption that all existing CMs comply with non-road 
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Fig. 15  Estimated national total CM emissions in China (2016-2020 and 2030) 
(a) HC; (b) NOx; (c) PM 

Fig. 14  Structure of the TMS used in an electric vehicle. Reprinted from (Zou et al., 2016), Copyright 2016, with per-
mission from Elsevier. PTC: positive temperature coefficient; EXV: expansion valve; RV: refrigerant valve 
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China IV standard and 20% of in-use CMs in China 
will be electric with zero emission. The national total 
emissions for HC, NOx, and PM in 2030 are forecast 
to be 62 700 t, 1 089 000 t, and 8250 t, respectively 
(Fig. 15). Although the number of in-use CMs is 
assumed to grow steadily from 2020 to 2030, the 
predicted total emissions for all pollutants will still be 
less than the level of 2020 especially for PM, due to 
the replacement of pre-China IV CMs with China IV 
CMs equipped with more advanced after-treatment 
technologies as well as with a significant number of 
ECMs. In short, we have shown that the implemen-
tation of ECM in China shows considerable envi-
ronmental benefits, and more government incentives 
are encouraged to further motivate CM manufacturers 
in developing more ECM models for the Chinese 
market. 

 
 

6  Conclusions 
 
Traditional CM no longer satisfies the demand 

for energy saving and environmental protection. The 
development of ECM that utilizes clean and renewa-
ble energy is of great importance in the CM industry. 
In this review, key technologies of PEDS and HEDS 
were discussed for the design of ECM. Due to harsh 
operation conditions, ECMs, such as the mining truck 
and excavator, demand high battery performance with 
long cycle life, fast charging speed, and stable current 
output. As the electrochemical performance of bat-
teries continues to improve, BMS design for ECM 
becomes more and more prominent and therefore we 
have included a deep discussion on existing BMS 
technologies. In addition, we roughly estimated the 
national total CM emissions from 2016 to 2020 and 
the potential environmental benefits of employing 
ECMs by 2030. 

With increasing regulations on emission control 
and the promotion of clean energy, the market of 
ECMs in China has been rapidly expanding. Top CM 
players such as SANY and LiuGong have already 
made a significant effort in the progress of electrifi-
cation through several strategic collaborations with 
Contemporary Amperex Technology Co., Limited 
(CATL), a leading battery manufacturer in China. In 
addition, the rapid development of information 
technology, e.g. artificial intelligence, internet of 

things, and 5G is transforming the CM industry. 
Many new ECM models are already equipped with 
online data transmission features. To improve opera-
tion safety and efficiency, companies such as XCMG 
and Hangcha are developing technologies to achieve 
autonomous driving and real-time communications 
with road infrastructure and warehouses. 
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