
Liu et al. / Front Inform Technol Electron Eng   2017 18(7):898-914 898 

 
 
 
 

Steering control for underwater gliders* 
 

You LIU†1,2, Qing SHEN2, Dong-li MA1, Xiang-jiang YUAN†‡2 

(1School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China) 
(2Institution of China Academy of Aerospace Aerodynamics, Beijing 100074, China) 

†E-mail: 542165262@qq.com; yuan_xj18@163.com 
Received Nov. 23, 2016;  Revision accepted Mar. 8, 2017;  Crosschecked July 13, 2017 

 

Abstract:    Steering control for an autonomous underwater glider (AUG) is very challenging due to its changing dynamic char-
acteristics such as payload and shape. A good choice to solve this problem is online system identification via in-field trials to 
capture current dynamic characteristics for control law reconfiguration. Hence, an online polynomial estimator is designed to 
update the yaw dynamic model of the AUG, and an adaptive model predictive control (MPC) controller is used to calculate the 
optimal control command based on updated estimated parameters. The MPC controller uses a quadratic program (QP) to compute 
the optimal control command based on a user-defined cost function. The cost function has two terms, focusing on output reference 
tracking and move suppression of input, respectively. Move-suppression performance can, at some level, represent energy-saving 
performance of the MPC controller. Users can balance these two competitive control performances by tuning weights. We have 
compared the control performance using the second-order polynomial model to that using the fifth-order polynomial model, and 
found that the former cannot capture the main characteristics of yaw dynamics and may result in vibration during the flight. Both 
processor-in-loop (PIL) simulations and in-lake tests are presented to validate our steering control performance. 
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1  Introduction 
 

The autonomous underwater glider (AUG), as a 
kind of autonomous underwater vehicle (AUV), has 
become more and more popular, for example, the 
Seaglider, Slocum, and Spray (Eriksen et al., 2001; 
Rudnick et al., 2004), the Fòlaga (Alvarez et al., 
2009), the Sterne (Phoemsapthawee et al., 2011), the 
Gliding Robotic Fish (Zhang et al., 2014; Zhang and 
Tan, 2015), and the Universiti Sains Malaysia (USM) 
hybrid-driven UG (Isa et al., 2014), for its advantages 
of long duration (ranging from weeks to months), 
long cover distance (more than 3000 km), and energy 

savings, when compared with propeller-powered 
AUVs in ocean research. However, its steering con-
trol is also more challenging than conventional AUVs. 
Due to relatively slow motion speed, the AUG is quite 
sensitive to environmental disturbance, such as sur-
face waves and ocean currents. Thus, conventional 
control methods like proportional-integral-derivative 
(PID) linear quadratic regulator (LQR) controllers 
cannot provide both easy control implementation and 
high convergence speed for stabilization in the pres-
ence of continuously varying water disturbances. In 
addition, because the AUG dynamic is nonlinear, 
conventional linear-system-based PID controllers 
cannot dynamically compensate for unmodeled ve-
hicle hydrodynamic forces. The unmodeled hydro-
dynamic forces may cause critical problems for 
steering control. For example, the glider Stern en-
countered ‘counter-steering’ behavior (Phoemsap- 
thawee et al., 2013) and the first Stern model was lost 
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during sea trials due to unmodeled hydrodynamic 
forces. As the dynamic model underlies the design of 
its navigation, guidance, and control systems, any 
deviation from its nominal model would potentially 
degrade its performance or in the worst case, cause 
critical safety issues. Thus, a dynamic model based on 
measured data from experiments is more accurate and 
reliable than a purely theoretical model dependent on 
approximations and assumptions. Furthermore, the 
parameters in the AUG dynamic model vary when it 
has different payloads (net buoyancy) and glider 
geometry. For commercial real-world considerations, 
the AUG controller should be modular in design and 
support reconfiguration to fulfill the diverse re-
quirements of end users (Eng et al., 2016). Therefore, 
the AUG control method should be adaptable to dif-
ferent payloads and shapes.  

It is obvious that conventional PID and LQR 
controllers are inadequate to address the control dif-
ficulties mentioned earlier. One method to overcome 
such problems is online system identification, to up-
date the yaw dynamic model for steering control. 
Online system identification has several advantages. 
The yaw dynamic model obtained through online 
system identification is more accurate and reliable 
than a purely theoretical yaw dynamic model, because 
its parameters are directly obtained from measured 
data. Online system identification works well when-
ever the payload (net buoyancy) and glider shape 
change. Compared with offline identification, online 
identification can reduce calculation complexity (Eng 
et al., 2016). 

A newly manufactured AUG/AUV is usually 
programmed to perform a set of maneuvers under 
known excitation, and then the dynamic characteris-
tics are obtained based on the behavior measured 
using on-board sensors. Caccia et al. (2000) and 
Mišković et al. (2011) used such an approach to 
capture desired dynamic features. Tiano et al. (2007) 
used an observer Kalman filter identification method 
to identify yaw dynamics of the Hammerhead AUV. 
Both simulation and experimental results were pre-
sented, but the online implementation of their algo-
rithm was not discussed in detail. Similar work was 
done by Rentschler et al. (2006), where parameter 
estimation was performed offline using an optimiza-
tion technique. Eng et al. (2016) proposed a state 
variable filter and recursive least square (SVF-RLS) 

estimator for online yaw dynamic identification, and 
compared it with the conventional offline identifica-
tion method. The comparison showed that the 
SVF-RLS estimator is better in terms of prediction 
accuracy, computational cost, and training time. 
However, the gain-scheduled controller introduced in 
Eng et al. (2016) is conventional. Although this con-
troller is adaptive to the linear-parameter-varying 
(LPV) model, its reference tracking performance is 
not optimized and the move suppression performance 
(energy saving) of the manipulated variable is  
ignored.  

Our aim in this study is to propose an effective, 
optimal, energy-saving, and adaptive controller for 
underwater glider steering control. Compared with 
previous work mentioned earlier, critical features of 
our controller are described as follows: 

1. Adaptivity. A polynomial estimator is de-
signed to represent the current linear single-input, 
single-output (SISO) yaw dynamic model. During 
every control interval, the parameters are updated 
through online system identification and sent to the 
adaptive model predictive control (MPC) controller 
when they are available. Thus, the polynomial esti-
mator is an LPV model that is adaptive to different 
payloads and glider geometries.  

2. Reference tracking optimization. Reference 
tracking performance is the basic requirement for 
most controllers. A term focusing on this performance 
is involved in the cost function, and the adaptive MPC 
controller optimizes this cost function by using the 
KWIK (know what it knows) algorithm to determine 
the optimal manipulated variable (control input) sent 
to the servomotor during every control interval.  

3. Energy conservation. Because steering control 
works during the whole voyage and the electric en-
ergy stored on an AUG is always limited, energy- 
saving performance is a critical aspect of the heading 
controller. We use an inner mass to adjust the lateral 
center of gravity (CG) location for heading control, 
and its severe vibration (see Fig. 17 in Section 5.2) 
may consume a large amount of additional electric 
power. A term representing input suppression is 
added to a cost function for energy-saving considera-
tions. The controller minimizes the cost function to 
determine the optimal control command. Users can 
balance the reference tracking mentioned earlier and 
the move suppression here by tuning the weights 
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between them.  
4. Universality. Although we discuss only 

steering control here, our method can be applied to 
other aspects, such as depth control. For simplicity, 
these other aspects are omitted in this paper. 

5. Short design cycle. To find and solve potential 
problems in advance, we did processor-in-loop (PIL) 
simulations before the in-lake test. We compared the 
control performance using the second-order polyno-
mial model (Eng et al., 2016) to that using the 
fifth-order polynomial model in PIL simulations, and 
found that the former cannot capture the main char-
acteristics of yaw dynamics and may result in vibra-
tion during the simulation. Detecting and solving this 
problem before in-field experiments can shorten the 
whole AUG design cycle and avoid the waste of 
human, material, and financial resources on unnec-
essary experiments.  

6. Effectivity. Both PIL simulation and in-lake 
tests have validated the effectivity of our method 
proposed in this paper.  

 
 

2  Dynamics 

2.1  Six-degree-of-freedom (DOF) motion modeling  

Glider dynamic models have become more and 
more mature over the years. Leonard and Graver 
developed a dynamic model for a general underwater 
glider based on the mass point assumption and a 
simple parametric hydrodynamic model (Leonard and 
Graver, 2001; Graver, 2005). Wang et al. (2011) 
proposed a nonlinear dynamic model for a winged 
hybrid-driven underwater glider using linear and 
angular momentum equations based on multi-rigid 
body theory and a torpedo hydrodynamic model.  

Three references are used in this study to clearly 
describe six-DOF motion dynamics. These frames are 
an inertia frame, a body frame, and a wind frame (Fig. 1). 

Because the definitions of the three frames are 
commonly known in the AUG field, we do not in-
troduce them in detail here. The rotation matrices to 
map vectors expressed in these frames are shown in 
matrix exponential form here:  

 
3 2 1ˆ ˆ ˆ

IB e e e ,ψ θ φ= ⋅ ⋅e e eR        (1) 
T

BI IB ,=R R                                    (2) 

32 ˆˆ
BW e e ,βα−= ⋅ eeR                        (3) 

T
WB BW .=R R                                 (4) 

 
 

 
 
 
 
 
 
 
 
 
 
Positive directions of Euler angles ϕ, θ, and ψ 

satisfy the right-hand rule. Positive directions of α and 
β are shown in Fig. 1. Vectors e1, e2, and e3 have a 
standard Euclidean basis in the 3D space. Notation ˆie  
is the skew-symmetric cross-product matrix of .ie  
The angle of attack and angle of sideslip can be cal-
culated in the following formula: 

 
arcsin( / ),  arctan( / ),v V w uβ a= =       (5) 

 
where u, v, and w are components of the trans- 
lational velocity of the glider in the body frame, and V 
is the magnitude of the translational velocity. 

In our paper, the equations of motion, also 
known as the Euler–Newton equations (Phoemsap- 
thawee et al., 2013), are developed for a glider whose 
CG can vary in the body reference frame. The  
Euler–Newton equations can be written in matrix 
form as 

 

3 G fic extB

fic extBG B

ˆ
,

ˆ
m m

m

 −     
+ =      

       

I R F Fv
M MωR M





   (6) 

 
where ‘^’ is the skew-symmetric cross-product oper-
ator. I3 is the third-order identity matrix. RG repre-
sents the location of CG in the body frame, which can 
be written in component form as [xG, yG, zG]T. m is the 
total mass of the glider and is assumed to be constant. 
In this study, xG and zG are constant and yG is regarded 
as a control input that is used to control the yaw angle. 
Its value is determined by the controller, which will 
be introduced in Section 4. vB represents translational 

α (+)

x 

z

CB

Y
y

XO

Gravity
acceleration

Z
β (+)

Translational velocity

Inertia frame Body frame

Fig. 1  Assignments of inertia, body, and wind frames 
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velocity, which can be written as [u, v, w]T in the body 
frame. ωB represents the angular velocity, which can 
be written as [p, q, r]T in the body frame. MB is the 
matrix of inertia determined by the CG location. Ffic 
and Mfic are fictitious force and moment, respectively:  
 

B B B B Gfic

fic B B B G B B

ˆ ˆ ˆ( )
.ˆˆ ˆ( ) ( )

m m

m

+  
=    +   

ω v ω ω RF
M ω M ω R ω v

        (7) 

 
The external force and moment applied on the glider 
consist of hydrodynamic force and moment, gravity, 
and buoyancy: 
 

hext

ext h G

.ˆm

+  
=    +   

F BF
M M R g

                   (8) 

 
Fh and Mh are hydrodynamic force and moment, 
respectively, B represents net buoyancy, and g is the 
acceleration of gravity. Using the rotation matrices 
(Eqs. (1)–(4)) mentioned earlier, B and g are equiva-
lent to RBIBine and RBIgine, respectively. Bine and gine 
can be written as [0, 0, B]T and [0, 0, 9.81]T in the 
inertia frame, respectively. B is regarded as a control 
variable given before the motion simulation. Hydro-
dynamic force and moment are presented as follows: 
 

ine vish

ine vish

.
    

= +    
     

F FF
M MM

                (9) 

 
Fine and Mine are inertial hydrodynamic force and 
moment around CB, respectively. Fvis and Mvis are 
viscid hydrodynamic force and moment around CB, 
respectively. Hydrodynamic force and moment cal-
culations will be introduced in detail in the next sec-
tion. Note that all the vectors above are in the body 
frame. For our glider, the total mass is constant and 
the matrix of inertia is determined by the gravity 
location. Because the out-body geometry does not 
vary, the added inertial matrix and center of buoyancy 
do not change with time. 

To describe the glider motion in the inertia frame, 
we need two other equations: 

 

IB B ,=b R v                             (10) 

B B.= ΩΩ R ω                            (11) 

b is the displacement vector from O to CB, which can 
be written in component form as [x, y, z]T in the inertia 
frame. Ω is the Euler angle vector written in compo-
nent form as [φ, θ, ψ]T. RΩB is the rotation matrix 
mapping angular velocity expressed in the body 
frame as an Euler angular velocity vector. RΩB can be 
expressed in matrix form as follows: 
 

B

1 sin tan cos tan
0 cos sin .
0 sin cos cos cos

φ θ φ θ
φ φ

φ θ φ θ

 
 = − 
  

ΩR  

 
Eqs. (6), (10), and (11) constitute our six-DOF motion 
dynamic model. 

The dynamic model we have derived is nonlin-
ear and can be classified as a differential algebraic 
equation (DAE) system. The DAE system consists of 
12 component differential equations with 12 time- 
dependent variables. The variables can be written in 
vector form as x(t)=[x, y, z, u, v, w, ϕ, θ, ψ, p, q, r]T. 
Then the dynamic model can be simplified to 

 
( ( ), ( ), ) 0.t t t =F x x                      (12) 

 

2.2  Hydrodynamic model 

2.2.1  Viscid hydrodynamic model 

In this study, we use a classic submarine hy-
drodynamic model introduced in our previous paper 
(Liu et al., 2016) to calculate viscid force and moment 
acting on an underwater glider. The model is based on 
Taylor series expansion of hydrodynamic forces and 
moments in suitable initial conditions. If the angle of 
attack, angle of sideslip, speed, and angular velocity 
are small, higher-order terms in the Taylor series can 
be ignored and the model can be simplified to 
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Parameters ρ, V, S, and L represent the density of 

water, velocity, wing area, and length of the glider, 
respectively. Fh and Mh represent hydrodynamic 
force and moment about CB, respectively. Here, all 
the hydrodynamic forces and moments are described 
in the body frame. The angle of attack is α. The side-
slip angel is β. The definitions of P, Q, and R are 
given as follows: 
 

/ ,P pL V=                             (15) 
/ ,Q qL V=                              (16) 
/ .R rL V=                              (17) 

 
Parameters p, q, and r represent the angular ve-

locities around the x, y, and z axes, respectively. The 
remaining terms in Eqs. (13) and (14) are dimen-
sionless coefficients, which can be estimated using 
the computational fluid dynamics (CFD) method 
introduced by Liu et al. (2016). The values of all 
hydrodynamic coefficients are listed in Table 1. The 
profile of our glider and main dimensions are pre-
sented in Fig. 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The main physical parameters are listed in Table 

2. Because our glider has approximately two sym-

metries, the non-diagonal elements in the inertia ma-
trix MB are approximately equivalent to zero. Diag-
onal elements Ixx, Iyy, and Izz represent moments of 
inertia around the x, y, and z axes, respectively. They 
are determined by the CG location. For our glider, the 
CG location has quite small changes in distance; for 
example, the absolute values of xG, yG, and zG are less 
than 0.005 m in this study. We can ignore the influ-
ence of the CG location and use CATIA software to 
estimate them at RG=[0, 0, 0]T. During motion simu-
lation, the inertia matrix does not vary. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

2.2.2  Inertia hydrodynamic model 

Based on potential flow theory, the inertia force 
and moment around CB can be described as 

 

ine B
add

ine B

.
   

= −   
  

F v
M

M ω




                    (18) 

 
Madd is the added inertia matrix, which involves 36 
elements. Based on potential flow theory, the matrix 
is symmetrical and there are only 21 independent 
elements. If the glider has two symmetrical planes, 
only eight independent elements are left non-zero. 
Our glider has left/right symmetry and approximate 

Table 2  Physical parameters of the underwater glider 
Hydrodynamic parameter Value 

L 1.6730 m 
m 49.1930 kg 
S 0.15 m2 

ρ 998.2 kg/m3 

Ixx 0.8265 kg·m2 
Iyy 7.5484 kg·m2 
Izz 8.0888 kg·m2 

 
Table 1  Viscid hydrodynamic coefficients of the  
underwater glider 
Hydrodynamic 

parameter Value Hydrodynamic 
parameter Value 

0Xα  −0.05869 1
QZ  −0.7545 

2Xα  3.971 1
PK  −0.1359 

1Yβ  −0.8390 1Mα  −0.4273 
1
PY  −0.01076 1

QM  −0.1168 
1
RY  0.3052 1

PN  0.006628 
0Zα  0.001184 1

RN  −0.1658 
1Zα  −5.630 1Nβ  0.02747 

 

Fig. 2  Three views of the underwater glider (unit of 
dimensions is millimeter, and unit of angles is degree) 
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up/down symmetry. Then the remaining independent 
non-zero elements in the added inertia matrix are 
exhibited as follows: 

 

11 22 33 44 55 66 26 35, , , , , , , .λ λ λ λ λ λ λ λ  
 
The methods to estimate these elements consist 

of geometry-based estimation (Chen, 1981; Shi, 1995; 
Li, 1999) and a potential flow theory based numerical 
approach (Li et al., 2010). Actually, geometry-based 
estimation is not always accurate in comparison with 
experimental data, and this method is limited to some 
special simple shapes. Xiao (2014) used CFD to 
calculate inertial hydrodynamic coefficients and 
compared the results with experimental data. They 
concluded that the CFD result error is within 6%. In 
light of the knowledge mentioned earlier, we choose 
the CFD method to calculate elements in the added 
mass matrix.  

To calculate λ11, λ22, λ33, λ26, and λ35, the bound-
ary condition of the glider surface is set as a no-slip 
wall and the out boundary of the calculation domain is 
set as a velocity-inlet with velocity V=[−0.0001, 0, 
0]T expressed in the inertia frame (Fig. 3). The vis-
cous model is inviscid based on potential flow theory, 
so the velocity that is set on the velocity-inlet 
boundary actually does not influence the calculation 
results. The velocity set on the velocity-inlet bound-
ary is for convergence considerations. We use the 
user-defined function to define the mesh movement 
of the calculation domain, and the translational ve-
locity is expressed as follows: 
 

,  ,  ,x y zv at v at v at= = =                  (19) 
 

where vx, vy, and vz are components of velocity in the 
inertia frame and a represents the component of ve-
locity acceleration in the inertia frame. In Fluent, the 
mesh movement of the calculation domain does not 
influence the velocity-inlet boundary condition, but 
the wall moving together with the whole domain has 
the same velocity as the calculation domain. We use a 
pressure-based transient solver to simulate the un-
steady flow, and other unmentioned options remain at 
default in Fluent. We simulate the potential flow three 
times at a=0.05, 0.1, and 0.15 m/s2 with a time step of 
0.0001 s and obtain elements λ11, λ22, λ33, λ26, and λ35 
(Table 3). Convergence is met when the relative error 

between two time steps is less than 10−4. Note that  
the values in Table 3 are averages of the three  
simulations. 
 
 
 

 
 
 
 
 
 
 

 
To calculate λ33, λ44, and λ66, the approach is 

almost the same as stated earlier. However, the do-
main zone is rotational and the angular velocity can 
be described as follows: 
 

,  ,  ,x y zt t tω ε ω ε ω ε= = =               (20) 

 
where ωx, ωy, and ωz are components of angular ve-
locity in the inertia frame and ε represents the com-
ponent of angular velocity acceleration in the inertia 
frame. We simulate the potential flow three times at 
ε=0.05, 0.1, and 0.15 rad/s2 with a time step of 0.0001 s 
and obtained elements λ33, λ44, and λ66 (Table 3). Note 
that the values in Table 3 are averages of the three 
simulations. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

2.3  Yaw dynamics 

We use MATLAB® to linearize the six-DOF 
motion dynamic model in Eq. (12) at an equilibrium 
point, where RG=[0.0023, 0, 0.005]T m, B=4.9 N, and 
[x, y, z, u, v, w, φ, θ, ψ, p, q, r]T=[321.58 m, 0 m, 
255.86 m, 0.83 m/s, 0 m/s, 0.011 m/s, 0 rad, −0.65 rad, 

Table 3  Elements in the added mass matrix 
Inertial hydrodynamic coefficient Value 

λ11 2.13 kg 
λ22 44.77 kg 
λ26 −1.73 kg·m 
λ33 63.13 kg 
λ35 4.75 kg·m 
λ44 1.54 kg·m2 
λ55 6.38 kg·m2 
λ66 6.46 kg·m2 

 

Fig. 3  Illustration of boundary conditions in the XY 
plane to calculate inertial coefficients 
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0 rad, 0 rad/s, 0 rad/s, 0 rad/s]T. The equilibrium point 
is not unique. Any equilibrium point near the point 
used in this study is reasonable. We are most con-
cerned with the yaw dynamic structure instead of the 
parameters in the yaw dynamic model. Treating yG as 
input and ψ as output, the linearized model can be 
converted to the transfer function as follows: 

 
( ) ( ) ( ),Y s F s U s=                        (21) 

 
where F(s)=(−25.38s3−253.2s2−140.6s−2.998)/(s5+ 
12.55s4+27.34s3+13.69s2+1.194s). We discretize the 
continuous time dynamic linear system using zeroth- 
order hold on the inputs with sample time Ts=0.1 s. 
The result is as follows: 
 

( ) ( ) ( ),Y z F z U z=                       (22) 

 
where F(z)=(−0.117z4+0.1655z3+0.05169z2−0.1399z 
+0.03964)/(z5−4.128z4+6.677z3−5.255z2+1.991z−0.285). 
This is a fifth-order polynomial model. It can be ex-
pressed in the following difference equation form: 
 

5 5

1 1
( ) ( ) ( ),i i

i i
y k b u k i a y k i

= =

= − − −∑ ∑        (23) 

 

where a1=−4.128, a2=6.677, a3=−5.255, a4=1.991, 
a5=−0.285, b1=−0.117, b2=0.1655, b3=0.05169, b4= 
−0.13991, and b5=0.03964. y(k) and u(k) represent the 
output and input of the dynamic system at the kth 
sample time, respectively. As we know, ai and bi vary 
when we linearize the dynamic model at different 
equilibrium points, but the structure of the difference 
equation changes slightly. We use this structure to 
represent yaw dynamics and estimate ai and bi using 
an online estimator, which will be introduced in Sec-
tion 3. These parameters can be expressed in vector 
form as ˆ( )kθ =[−a1k, −a2k, −a3k, −a4k, −a5k, b1k, b2k, b3k, 
b4k, b5k]T at the kth sample time. Let Ak=[a1k, a2k, a3k, 
a4k, a5k]T and Bk=[b1k, b2k, b3k, b4k, b5k]. Thus, 
ˆ( )kθ =[−AT, BT]. Another simpler structure is used in 

this study to compare its performance to that of the 
structure in Eq. (23). The simpler structure is a  
second-order polynomial model proposed in Eng et al. 
(2016), and it can be expressed in difference form: 

2 2

1 1
( ) ( ) ( ).i i

i i
y k b u k i a y k i

= =

= − − −∑ ∑          (24) 

 
In the next section, we will introduce how the 

online estimator works using the polynomial model 
derived earlier.  

 
 

3  Online estimator 
 

The following set of equations summarizes the 
online estimator algorithm (Eng et al., 2016) used in 
this study: 

 
ˆ ˆ ˆ( ) ( 1) ( )[ ( ) ( )],k k k k k= − + −θ θ K y y  (25) 

T ˆˆ( ) ( ) ( 1),k k k= −y Ψ θ    (26) 

T

( 1) ( )( ) ,
1 ( ) ( 1) ( )

k kk
k k k
−

=
+ −

P ΨK
Ψ P Ψ

  (27) 

( ) [1 ( ) ( )] ( 1).Tk k k k= − −P K Ψ P   (28) 
 
ˆ( )kθ  represents the parameters vector estimated at 

the kth sample time (sample time is 0.1 s in this study). 
Ψ(k) is the regression vector at the kth sample time 
determined by previous input and output signals and 
can be expressed in vector form as [y(k−1), y(k−2), 
y(k−3), y(k−4), y(k−5), u(k−1), u(k−2), u(k−3), 
u(k−4), u(k−5)]T. P(k) is the covariance matrix at the 
kth sample time. 

This algorithm is entirely specified by the se-
quence of data y(k), the gradient (regression vector) 
Ψ(k), the initial conditions θ(t=0) (initial guess of the 
parameters), and P(t=0) (covariance matrix that in-
dicates parameter errors). In this study, y(k) is rec-
orded by a digital compass every 0.1 s in experiments 
(in Section 6) or read from the host computer in PIL 
simulations (in Section 5), and it is noise-free by 
using a built-in low-pass finite impulse response (FIR) 
filter in the experiment. In the experiment, u(k) is the 
control command sent to the servomotor to control the 
CG location yG every 0.1 s. In PIL simulation, u(k) is 
the control command sent to the host computer to 
solve the six-DOF motion dynamic model. It is as-
sumed that the CG location yG is the same as the 
commanded location sent to the servomotor in the 
experiment. This assumption holds because the re-
sponse time of the servomotor is many times faster 
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than the yaw dynamics (Eng et al., 2016). Ψ(k) is 
determined by previous values of u(k) and y(k). An 
initial guess of θ(t=0) is vector [0, 0, 0, 0, 0, 0, 0, 0, 0, 
0]T. P(t=0) is equal to 1000I10, where I10 is the 
10th-order identity matrix. 

In Section 4, we introduce how to compute the 
control command u(k) based on the estimated pa-
rameters obtained by the online estimator during 
every control interval. 

 
 

4  Model predictive control controller 
 

The MPC controller uses the parameters com-
puted by the online estimator at the kth sample time to 
predict the outputs for the next p time steps. p is called 
the prediction horizon, always set as five in this study. 
The method is shown here: 
 

5 5

1 1
( ) ( ) ( ),jk jk

j j
y k i b u k i j a y k i j

= =

+ = + − − + −∑ ∑  (29) 

 
where i varies from 1 to p. ajk and bjk represent the 
parameters estimated at the kth sample time. y(k+i) is 
the predicted value of the output signal. Because the 
inputs and outputs before the kth sample time are 
already known, it is worth noting that the predicted 
output is a function of the predicted inputs zk=[u(k), 
u(k+1), …, u(k+p−1)]T only. To compute the optimal 
values of the predicted inputs, we minimize a cost 
function that represents the performance of fast ref-
erence tracking and input suppression to determine 
the plant input signal. This cost function consists of 
two terms. The first term, called the output reference 
tracking function, is shown here: 

 
2

1

1 1

( ( ) ( ))( ) ,
p

y k
i

w r k i y k iJ z
s=

 + − +
=  

 
∑         (30) 

 
where k is the current control interval (kth sample 
time), p is the prediction horizon (number of inter-
vals), zk is the input signal, given by zk=[u(k), 
u(k+1), …, u(k+p−1)]T, y(k+i) is the predicted value 
of output at the ith prediction horizon step, r(k+i) is 
the reference value at the ith prediction horizon step, 
which is given by users, w1 is the tuning weight for 

plant output at the ith prediction horizon step  
(dimensionless), and s1 is the scale factor for plant 
output in engineering units. In this study, s1 is always 
set as 2π rad. 

The values p and w1 are controller specifications 
and are constant. The controller receives r(k+i) values 
for the entire prediction horizon. The controller uses 
Eq. (29) to predict the plant outputs. Thus, Jy is a 
function of zk only. 

As for our underwater glider, move suppression 
performance is also a critical factor for energy savings. 
Because severe vibration of the inner movable mass 
may lead to additional energy consumption and sta-
bility problems, the move-suppression function is 
used to restrain the variance of the control command 
sent to the servomotor. We use a cost function to 
represent this performance: 

 
21

2

1 2

( ( ) ( 1))( ) ,
p

u k
i

w u k i u k iJ z
s

−

∆
=

 + − + −
=  

 
∑    (31) 

 
where k is the current control interval (kth sample 
time), p is the prediction horizon (number of inter-
vals), zk is the input signal, given by zk=[u(k), 
u(k+1), …, u(k+p−1)]T, u(k+i) is the predicted value 
of output at the ith prediction horizon step, and r(k+i) 
is the reference value at the ith prediction horizon step, 
which is given by users, w2 is the tuning weight for 
plant output at the ith prediction horizon step (di-
mensionless), and s2 is the scale factor for plant input 
in engineering units. In this study, s2 is always set as 
0.01 m. 

The values p and w2 are controller specifications 
and are constant. Thus, JΔu is a function of zk only. 

In summary, the cost function we finally use is 
the sum of the two terms mentioned earlier, each 
focusing on a particular aspect of controller perfor-
mance, as follows: 

 
( ) ( ) ( ).k y k u kJ z J z J z∆= +                 (32) 

 
This function is determined by zk only. zk is the 

input decision; it will be computed using a quadratic 
programming (QP) minimization method. As de-
scribed previously, each term includes weights that 
help balance competing objectives, such as reference 
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tracking and move suppression.  
For our glider, the CG location yG (control input) 

is limited to a certain scope for a limited glider inner 
space, and the input rate is also limited for the limited 
response rate of the servomotor. Thus, we have  
the following constraint equations at every control 
interval: 

 
0.005 m ( ) 0.005 m,u k i− ≤ + ≤              (33) 

0.0001 m ( ) ( 1) 0.0001 m,u k i u k i− ≤ + − + − ≤   (34) 

 
where i ranges from 0 to p−1. 

The problem of minimizing cost function (32) 
under the constraint equations can be converted to the 
standard QP form. Now we introduce the process in 
detail. Using Eq. (29), the predicted output values can 
be written as 
 

0

0

( ) ( ) ( )

( ) ( ) ( 1)
,k

r k i y k i u k

r k p y k p u k p

+ − +   
   = +   
   + − + + −   

= +

E E

Ez E

 

  (35) 

 
where E is a p×p matrix determined by known values 
y(k), y(k−1), y(k−2), y(k−3), y(k−4), u(k−1), u(k−2), 
u(k−3), u(k−4), and ˆ( )kθ  at the kth sample time. E0 is 
a p×1 matrix determined by known values y(k), 
y(k−1), y(k−2), y(k−3), y(k−4), u(k−1), u(k−2), u(k−3), 
u(k−4), and ˆ( )kθ  at the kth sample time. 

Now, we introduce the method for calculating 
the elements in matrices E and E0. Using Eq. (29), we 
have y(k+1)=−a1ku(k)−a2ku(k−1)−a3ku(k−2)−a4ku(k−3) 
−a5ku(k−4)+b1ky(k)+b2ky(k−1)+b3ky(k−2)+b4ky(k−3)+
b5ky(k−4). Then, the elements in the first row of ma-
trix E can be expressed as E11=a1k, E12=0, E13=0, 
E14=0, and E15=0. The element in the first row of E0 
can be expressed as E011=a2ku(k−1)+a3ku(k−2)+ 
a4ku(k−3)+a5ku(k−4)−b1ky(k)−b2ky(k−1)−b3ky(k−2)−
b4ky(k−3)−b5ky(k−4)+r(k+1). The rest of the elements 
in E and E0 can be obtained in the same way as shown 
earlier. 

To express Eq. (31) in matrix form, we have the 
following formula: 

0

0

( ) ( 1) ( )

( 1) ( 2) ( 1)
.k

u k u k u k

u k p u k p u k p

− −   
   = +   
   + − − + − + −   

= +

F F

Fz F

 

 
(36) 

 
F can be written as follows: 
 

0 0 0 0
1 0 0 0

,0 1 0 0

0 0 1 0

p p

p p

×

×

 
 
 
 = −
 
 
  

F I







   



        (37) 

0

1

( 1)
0

.

0 p

u k

×

− 
 
 = −
 
 
 

F


                               (38) 

 
Ip×p is a p×p identity matrix.  

Substituting Eqs. (35) and (36) into Eq. (32), the 
cost function can be written as 

 
T 2

0 0

T 2
0 0

( ) ( ) ( )

             ( ) ( ),
k k y k

k u k

J

∆

= + +

+ + +

z Ez E w Ez E

Fz F w Fz F
      (39) 

 
where wy is equal to w1/s1Ip×p and wΔu is equal to 
w2/s2Ip×p. 

Furthermore, Eq. (36) can be simplified to 
 

T T( ) 2 constant.k k k kJ = + +z z Hz f z       (40) 
 

Thus, we can minimize the expression as follows 
to minimize the cost function above: 

 

T T1min   
2k

k k k+
z

f z z Hz                       (41) 

such that 
,k ≤Az b                                 (42) 

 
where zk=[u(k), u(k+1), …, u(k+p−1)]T is the input 
decision, and H is the Hessian matrix. A and b are 
determined by linear constraint coefficients in Eqs. 
(33) and (34). fT, H, A, and b are all known and the 
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controller computes these matrices at the beginning of 
each control instant. 

If ignoring constraint (42), the minimization 
problem has the following analytical solution: 

 
1

* .−= −z H f                          (43) 
 

If constraint (42) is considered, we use the clas-
sical KWIK algorithm (Schmid and Biegler, 1994) to 
solve the QP problem described in Eqs. (41) and (42). 
In the very first control step, KWIK uses a cold start, 
in which the initial guess is the unconstrained solution 
described in Eq. (43). If this solution satisfies the 
constraints, it is the optimal QP solution, * ,z  and the 
algorithm terminates. Otherwise, at least one of the 
linear inequality constraints must be satisfied as an 
equality. In this case, KWIK uses an efficient, nu-
merically robust strategy to determine the active 
constraint set satisfying the standard optimality con-
ditions. In the following control steps, KWIK uses a 
warm start. In this case, the active constraint set de-
termined at the previous control step becomes the 
initial guess for the next. 

Note that the actual control command sent to the 
servomotor at the kth control interval is u(k) only and 
that the remaining values in vector zk=[u(k), u(k+1), …, 
u(k+p−1)]T are all ignored. 

Although KWIK is robust, we have considered 
the following special situations: 

The search for the active constraint set is an it-
erative process. If the iterations reach a problem- 
dependent maximum, the algorithm terminates. 

Because the QP problem includes hard con-
straints (Eqs. (32) and (33)), these constraints might 
be infeasible (impossible to satisfy). If the algorithm 
detects infeasibility, it terminates immediately. 

In the last two situations, with an abnormal 
outcome to the search, the controller will retain the 
last successful control command. 
 
 
5  Processor-in-loop validation 
 

In Sections 2–4, we have introduced our 
six-DOF dynamic model, online estimator, and 
adaptive MPC controller in detail. From now on, we 
use the PIL technology to validate their performance. 
PIL means that the online estimator and MPC con-

troller operate in the microcomputer, while the 
six-DOF dynamic model works in the host computer. 
The microcomputer is a TI DSP-F28335 chip based 
board which can send and receive data from the host 
computer using an RS232 cable (Fig. 4). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

On the host side (PC), MATLAB simulates the 
six-DOF dynamic model and sends the current yaw 
angle to the microcomputer through the RS232 cable. 
On the target board side, the MATLAB Embedded 
Coder Toolbox can download the algorithms of the 
estimator and MPC controller into the chip through 
Code Composer Studio 5.5 (CCS 5.5) software and 
they operate on the chip independently. When the 
current yaw angle is available from the host side, the 
chip reads the data, computes the current plant input, 
and sends it back to the host side. The data exchange 
model between the host and target side is the serial 
communication interface (SCI) and the baud rate is 
set as 11 520. Our PIL simulations consist of three 
steps:  

1. Testing the performance of the online esti-
mator. We monitor the time history of the estimated 
parameters using the given excitation input and test 
the convergence performance. At the same time, we 
compare the output prediction based on the estimated 
parameters and Eq. (23) with the six-DOF dynamic 
model output to validate the correctness of our online 
estimator. The estimated parameters are the initial 
condition for the next step. During the simulation in 
this step, the MPC controller is shut down. 

2. Testing the MPC controller performance in-
cluding reference tracking and move suppression 
based on the parameters obtained in the previous step. 
We introduce how to balance these two types of 

Fig. 4  Exhibition of the F28335-based board 

RS232 cable
DSP F28335 chip
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competing performance by tuning weights, as men-
tioned in Section 4. 

3. Testing if the second-order polynomial 
structure (Eng et al., 2016) used by previous re-
searchers is powerful enough to capture the main 
dynamic features and can be applied to our under-
water glider. 

5.1  Online estimator validation 

In this section, we validate the performance of 
the online estimator. Fig. 5 shows the data flow on the 
host side and target side. 
 

 
 
 
 
 
 

 
 
The online estimator receives and sends data 

every 0.1 s. The six-DOF dynamic model simulates 
glider movement using the fourth-order Runge–Kutta 
method with the initial condition x0(t)=[0, 0, 0, 0.1 
m/s, 0, 0, 0, 0, 0, 0, 0, 0]T. xG=0.0013 m, zG=0.005 m, 
and B=4.9 N. The time history of the given input 
signal is shown in Fig. 6. 

 
 
 
 
 
 
 
 
 

 
 

 
The given excitations are uniformly distributed 

random numbers ranging from −1.5 mm to 1.5 mm. 
Under such excitation, the parameters computed by 
the online estimator are shown in Figs. 7 and 8. 

As shown in Figs. 7 and 8, all the parameters 
converge quickly from the initial guess θ(t=0)=[0, 0, 
0, 0, 0, 0, 0, 0, 0, 0]T, which indicates that our online 
estimator has good convergence performance. The 

actual values of all the parameters at the end of the 
simulation are listed in Table 4. In the next section, 
the controller and online estimator use these values as 
the initial condition. 

As shown in Fig. 5, the output can be  
computed using the six-DOF motion dynamic model 
in MATLAB or using the linear polynomial dynamic 
model expressed in Eq. (23). The results of these two 
outputs and the error between them are shown in Fig. 9. 

 
 

 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4  Estimated parameters in vectors A and B 
through processor-in-loop simulation 
Parameter Value Parameter Value 

a1 −0.58 b0 −0.080 
a2 −0.37 b1 −0.17 
a3 −0.18 b2 −0.17 
a4 −0.0095 b3 −0.13 
a5 0.16 b4 −0.093 

 

Fig. 7  Time history of parameters in vector A 
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Fig. 8  Time history of parameters in vector B 
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Fig. 6  Given excitation of the input signal 
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Fig. 9  Comparison between outputs y1 and y2 during 
the processor-in-loop simulation 
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As shown in Fig. 9, the output y1 is always ap-
proximately equal to y2 and the error between them is 
quite small, which indicates that the linear time- 
varying polynomial model can always capture the 
main features of the nonlinear six-DOF model. 

5.2  MPC controller performance validation 

In this section the performance of our adaptive 
MPC controller is tested. The data flow during our 
PIL simulation is shown in Fig. 10. 

 
 
 
 
 
 
 

 
The six-DOF model operates in the host com-

puter in MATLAB. It communicates with the target 
microcomputer through an RS232 cable. The online 
estimator and MPC controller work on the target 
board. The initial parameters for the online estimator 
are achieved in Table 4 in Section 5.1. Except for net 
buoyancy (Fig. 11), the initial condition of the 
six-DOF model is the same as in Section 5.1. 

At first, we test the reference tracking perfor-
mance when net buoyancy increases. The weights w1 

and w2 are set as 1 and 0, respectively. Fig. 11 shows 
the time history of net buoyancy. 
 

 
 
 
 
 
 

 
 
 
 

 
Two steps occur at 200 s and 350 s and the pa-

rameters estimated by the online estimator should 
respond to the steps. Fig. 12 shows the time history of 
parameters in vector A. Figs. 13 and 14 show the 
zoom pictures of steps 1 and 2 in Fig. 12.  

Fig. 15 shows the time history of parameters in 
vector B. 

 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 

 
 

 
 

 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 

 
 
 

Figs. 12 and 15 show that the online estimator can 
rapidly capture the changing dynamics features due to 
net buoyancy steps, and compute the adaptive param-
eters for the MPC controller to make the right decision. 
The controller performance is shown in Fig. 16.  

Fig. 10  Data flow of the processor-in-loop simulation 
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Fig. 11  Time history of net buoyancy during the  
processor-in-loop simulation 
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Fig. 12  Time history of parameters in vector A during 
processor-in-loop simulation 
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Fig. 14  View of step 2 in Fig. 12 (zoom in) 
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Fig. 15  Time history of parameters in vector B 
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Fig. 13  View of step 1 in Fig. 12 (zoom in) 
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Although the net buoyancy changes (Fig. 11) 
during the simulation, the adaptive MPC controller 
always works well. Fig. 16 shows the reference 
tracking performance during the simulation. As 
shown in this figure, the output is approximately the 
same as the reference. 

Because w2 is always set as 0, the above simu-
lations ignore input move-suppression performance. 
Now we introduce how to tune w2 to balance refer-
ence tracking and move suppression. Compared with 
move suppression, reference tracking is more im-
portant. Thus, w1 should be larger than w2. Increasing 
w2 would be meaningful on the premise that w1 is 
large enough to guarantee reference tracking perfor-
mance. Figs. 17 and 18 exhibit the time history of 
inputs and outputs corresponding to w2=0, 0.1, 0.2, 
0.3, and 0.4. w1 is always set as 1. 

As shown in Fig. 17, the input suppression per-
formance is improved (control command vibration 
becomes weak) as w2 increases from 0 to 0.4. How-
ever, the output reference tracking shown in Fig. 18 
becomes poor when w2 is larger than 0.1. Thus, 
w2=0.1 is a proper choice to balance both perfor-
mances. As we know, severe input vibration can 
cause additional energy consumption to move inner  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 

mass. Thus, input suppression can, at some level, 
represent energy-saving performance. Now we start 
to estimate the energy used to move inner mass cor-
responding to different w2. Assuming that the un-
derwater glider is static and that the CG location 
varies as shown in Fig. 17, we can use the following 
formulas to estimate the total work that the inner mass 
consumes for movement: 

 
3998

total
1

,i i
i

W F u
=

= ⋅ ∆∑                         (44) 

2 12
,

0.01
i i i

i l
l

u u umF m
m

+ +− +
= ⋅ ⋅               (45) 

1( ).i i i
l

mu u u
m +∆ = ⋅ −                       (46) 

 
Fi represents the resultant force acted on the inner 
mass during the kth control interval. Δui represents 
the displacement during the kth control interval. ml is 
the total mass of the inner movable mass and its mass 
is about 5 kg. m is the total mass of the glider. Thus, 
we have obtained the total work corresponding to 
different values of w2 (Table 5). As shown in Table 5, 
it is concluded that increasing w2 can improve the 
energy-saving performance of our steering controller. 
 
 
 
 
 
 
 
 
 

Table 5  Consumed work corresponding to dif-
ferent w2

* 

w2 Work (J) 
0 1.48 

0.1 0.97 
0.2 5.8×10−4 
0.3 2.9×10−6 
0.4 5.5×10−7 

* w1=1  
 

Fig. 16  Time history of processor-in-loop simulation 
output and reference output 
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Fig. 17  Time history of inputs corresponding to dif-
ferent w2 
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Fig. 18  Time history of outputs corresponding to dif-
ferent w2 
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5.3  Polynomial structure validation 

The polynomial structure used is based on  
Eq. (23), a fifth-order linear time-varying polynomial 
model with 10 parameters to be estimated. As we 
know, the more complicated polynomial structure we 
use, the more computational effort and memory we 
need. Compared to Eq. (23), Eq. (24) is less compli-
cated and has only four parameters to be estimated. 
To confirm its control performance, we perform a PIL 
test and the results are presented in Figs. 19 and 20. 
Except for the polynomial structure, the simulation 
process here is the same as in Section 5.2. 

 
 

 
 

 
 
 
 
 
 

 
 
 
 

 
 
 

 
 
 
 
 
 

 
 
Fig. 19 shows that the reference tracking per-

formance corresponding to the fifth-order polynomial 
structure is quite good, whereas the reference tracking 
performance corresponding to the second-order poly- 
nomial is poor and the output trembles significantly 
sometimes. Fig. 20 shows the partially enlarged vi-
bration zone in Fig. 19. 

5.4  Stability analysis 

For a closed-loop control system, stability is the 
basic requirement. In this section, we verify this 
performance through monitoring the MPC control-

ler’s response to an unknown momentary disturbance. 
The disturbance is added to the yaw angle output 
during PIL simulation and it works on the host side. 
Fig. 21 shows the time history of disturbance. 

 
 

 
 
 
 
 
 
 
 
 
 

 
Two impulses occur at 110 s and 120 s. Both 

impulses occur for 5 s. Fig. 22 shows the closed- 
loop MPC control system response to the disturbance. 
Except for the added disturbance, the PIL simulation 
process here is the same as in Section 5.2. 

 
 

 
 
 
 
 

 
 
 
 
As shown in Fig. 22, the yaw angle deviates 

from its reference when the impulse occurs at 110 to 
125 s, and it gradually returns to its reference after the 
disturbance disappears. This PIL simulation indicates 
that our control system is stable and capable against a 
certain degree of disturbance. 
 
 

6  In-lake experiments 
 

In this section we introduce our in-lake experi-
ments based on previous PIL simulations. Our glider 
is equipped with a digital compass (TCM5), a water 
pump, a servomotor, and a pressure sensor. The atti-
tude angles (roll, pitch, and yaw angle) are recorded 
by the compass and filtered by a built-in low-pass FIR 
filter. The water pump can take in and expel water, 

Fig. 19  Time history of outputs corresponding to dif-
ferent polynomial structures 
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Fig. 20  View of the vibration zone in Fig. 19 (zoom in) 
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Fig. 21  Time history of the disturbance signal during 
processor-in-loop simulation 

0 50 100 150 200 250 300 350 400
−0.010

−0.005

0

0.005

0.010

Time (s)

D
is

tu
rb

an
ce

 (r
ad

)

Fig. 22  Control system response to the disturbance 
signal during processor-in-loop simulation 
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thereby changing the net buoyancy of the glider. The 
water is temporarily collected in a water tank when 
the glider dives and expelled when the glider surfaces. 
The capacity of the water tank is about 800 ml and the 
time rate of water flow can be measured by an elec-
tromagnetic flow meter. The total mass of the glider is 
about 49.193 kg with the water tank full. The ser-
vomotor is used to control the lateral CG location yG 
by driving an inner movable mass and the mass 
weighs about 5 kg. Because the servomotor responds 
more quickly than yaw dynamics, the CG location is 
assumed to be the same as the control command 
computed by our MPC controller. The pressure sensor 
mentioned earlier is used to record the vertical depth 
of our glider in the lake. The CG location xG is about 
0.0013 m with the water tank full measured before the 
in-lake experiment. Our experiment consists of two 
steps: 

1. Obtaining proper parameters for the controller 
to use in step 2. The net buoyancy remains constant 
with a value about 1 N measured before the in-lake 
experiment. The control command sent to the ser-
vomotor is shown in Fig. 23. During this step, the 
controller is always turned off. The online estimator 
works after 25 s to avoid the effects of waves (Fig. 24) 
when the glider is near the surface of the water.  
Figs. 25 and 26 show the time history of parameters 
recorded in step 1. Table 6 presents the values of the 
estimated parameters. 

2. Testing the performance of the steering con-
troller that we have designed when the net buoyancy 
increases. The flow rate remains steady at about  
4 ml/s during our experiment and the net buoyancy is 
calculated through numerical integration for the flow 
rate recorded every 0.1 s. The steering controller and 
online estimator are turned down during the first 25 s 
of the experiment to avoid the effects of waves  
(Fig. 24) when the glider is near the surface of the  
 

 
 
 
 
 
 
 
 
 

water. After 25 s, the controller and online estimator 
start to work with the initial parameters obtained and 
shown in Table 6. Parameters w1 and w2 are set as 1 
and 0.1, respectively. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

Table 6  Estimated parameters in vectors A and B 
during the test 
Parameter Value Parameter Value 

a1 −0.29 b1 −0.067 
a2 −0.25 b2 −0.067 
a3 −0.20 b3 −0.066 
a4 −0.15 b4 −0.065 
a5 −0.11 b5 −0.064 

 

Fig. 23  Time history of the control command during 
the test 
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Fig. 25  Time history of parameters in vector A during 
the test 
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Fig. 26  Time history of parameters in vector B during 
the test 
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Figs. 27–32 exhibit the time history of net 
buoyancy, depth, roll angle, pitch angle, yaw angle, 
and input (control command sent to the servomotor), 
respectively. Based on Fig. 31, we conclude that our 
controller works well in the experiment when net 
buoyancy increases (Fig. 27). As shown in Fig. 32, 
the fact that the input command trembles relatively 
slightly indicates that the input move-suppression 
performance meets our expectations. 
 
 

 
 
 
 
 
 
 
 

 
 

 
 
 

 
 
 
 

 
 
 
 
 
 

 
 
 
 
 

 
 
 
 

 
 

 
 
 
 
 

 
 

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

7  Conclusions and perspective 
 

We have proposed an adaptive, optimal, move- 
suppression (energy-saving) controller based on 
online system identification for underwater glider 
steering control. The online estimator can always 
capture the dynamic features of the six-DOF motion 
model when net buoyancy changes. Its convergence 
time is about 40 s and its prediction error is quite 
small compared with the six-DOF motion model 
output. It provides parameters for an adaptive con-
troller to make optimal control decisions. The adap-
tive controller minimizes a cost function representing 
reference tracking and move suppression perfor-
mance to compute the input command. We have 
tuned the weights to balance the competitive perfor-
mances and concluded that w1=1 and w2=0.1 are 
proper choices for our MPC controller. We have 
compared the control performance using a second- 
order polynomial model to that using a fifth-order 
polynomial model in PIL simulations and found that 
the former cannot capture the main characteristics of 
yaw dynamics and may result in vibration during the 
flight. The PIL simulation can shorten the controller 
design cycle by detecting and solving potential 
problems before in-field experiments. The in-lake 
experiment results validate the performance of our 
steering controller when net buoyancy varies.  

Fig. 27  Time history of net buoyancy during the test 

25 50 100 150 200
0

1

2

3

4

5

Time (s)

B
 (N

)

Fig. 28  Time history of depth during the test 
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Fig. 31  Time history of the yaw angle during the test 
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Fig. 32  Time history of the control command (yG) 
during the test 
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Fig. 29  Time history of the roll angle during the test 
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Fig. 30  Time history of the pitch angle during the test 
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Because the controller ignores ocean current and 
surface wave effects, our future work is to take en-
vironmental disturbance into consideration, modify 
the algorithm if needed, and carry out ocean  
trials. 
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