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Motivition

1. The time-dependent viscoelastic response of cement-based materials to
applied deformation is far from fully understood at the atomic level.

2. Calcium silicate hydrate (C-S-H), the main hydration product of Portland
cement, is responsible for the viscoelastic mechanism of cement-based
materials.

3. The effects of various factors on the stress relaxation properties of C-S-
H were systematically investigated by molecular dynamics simulation to
shed light on the stress relaxation properties of C-S-H from a
microscopic perspective, bridging the gap between the microscopic
phenomena and the underlying atomic-level mechanisms.



Method

B Evolution of stress
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Fig. 4 The change in stress of C-S-H subjected to different shear deformations at T = 298 K: (a)
evolution of Ao under y,,; (b) evolution of Ao under y,,

» The stress evolution of the entire C-S-H system takes on a typical L-shape
during the stress relaxation process.

» once the initial shear deformation exceeds the elastoplastic range, some micro
cracks are probably generated within C-S-H systems, resulting in a rela-tively
small Ac during the stress relaxation process
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B Time correction function
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Fig. 7 C(t) of the interlayer Ca-O bonds and H-bonds under different shear states considered here: (a)
C(t) of interlayer Ca-O bonds under y,,; (b) C(t) of H-bonds under vy,,; (c) C(t) of interlayer Ca-O
bonds under y,,; (d) C(t) of H-bonds under y,,.
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B Mean square displacement
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Fig. 11 MSD of constituent parts in the C-S-H system under y,, = 4° : (@) MSD of each at-
om/molecule/group in C-S-H at T = 298 K; (b) MSD of interlayer calcium; (c) MSD of hydroxyl group;
(d) MSD of water molecule.
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B Nonaffine squared displacement
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Fig. 15 Intensity plots of nonaffine squared displacement of C-S-H system with different water
contents (r.,, = 3 A).



Conclusions

B The stress relaxation response of C-S-H occurs regardless of
whether it is under initial shear, tensile, or compressive
deformation, and shows a heterogeneous characteristic.

B A large Ca/Si ratio or high temperature leads to low viscosity
In the interlayer region and low cohesion between the calcium-
silicate layer and the interlayer region, resulting in high atomic
dynamics, especially for water molecules, hydroxyl groups,
and interlayer calcium atoms.

B Water molecules play a critical role in the morphology and
Interlayer hydrogen bonding network of C-S-H, which in turn
leads to C-S-H exhibiting different stress relaxation properties
at different water contents.





