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1-DOF Ultrasonic Resonance Transducer
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Fig. 2 Modal analysis frequency for the 1st and 2nd modes with SS 316L (a) and
"""" Ti-6A1-4V (b)

23053 Hz
Mode 1

y : : . _ .
g I;* Fig. 1 shows a typical design for a 1-DOF ultrasonic resonance
X

¢ transducer. The toolbar behaves like an extension of the horn, which
Mode 2 o 9 .
has a relationship to the resonance frequency.

.,

Fig. 1 Design of a 1-DOF ultrasonic resonance transducer made of SS 316L or Fig. 2 shows the outcomes of the modal simulation in ANSYS with a
Ti—6A1-4V: (a) schematic diagram; (b) 1st longitudinal mode; (c) 2nd

transducer made from different materials. The overhanging length (OL)
longitudinal mode. L: length; 0. diameter. Subscripts: B: screw bolt; P: affects the resonance frequency.
piezoelectric ceramic actuator; T: toolbar; F: front mass; H: horn; C:
collet & nut
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Electromechanical Impedance
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Fig. 5 Equivalent circuit model with T-type equivalent impedance structure
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Impedance Results
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Fig. 11 Comparison between simulated and experimental FRF impedance of an ultrasonic transducer
(stainless steel) (OL: 40 -50 mm): (a) simulation; (b) experiment
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Damping Ratio
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Fig. 15 Determination of the damping ratio versus amplitude of stainless steel (a) and titanium alloy (b)
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Conclusions

We assessed an electromechanical impedance model and the effect of OL and
different materials. We were able to draw the following conclusions:

» The electromechanical impedance simulation predicted resonance frequency with
less than 3% error, and is thus useful for predicting the resonance ultrasonic
frequency of ultrasonic transducers in the absence of a cutting load. In
addition, the OL affects the natural oscillation frequency. When the OL
increases, the resonance frequency decreases, indicating a larger acoustic
half-wavelength.

» Harmonic simulation can be used to predict resonance amplitude. However, it is
necessary to determine the damping ratio by calibration in order to estimate
resonance amplitude precisely. The damping ratio of stainless steel was 0.015 -
0.020; the damping ratio of titanium alloy was 0.005-0.010. The error for
amplitude prediction using harmonic simulation was less than 1. 5%.
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