Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)

High-efficiency ultrasonic assisted drilling of CFRP/Ti stacks under non-separation type and dry conditions

Key words:

Carbon fiber reinforced plastic and titanium alloy (CFRP/Ti) stacks; Ultrasonic-assisted drilling (UAD); Cutting force; Surface integrity; Tool wear

<u>Cite this as:</u> Enze YING, Zehua ZHOU, Daxi GENG, Zhenyu SHAO, Zhefei SUN, Yihang LIU, Lianxing LIU, Xinggang JIANG, Deyuan ZHANG, 2024. High-efficiency ultrasonic assisted drilling of CFRP/Ti stacks under non-separation type and dry conditions. *Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)*, 25(4):275-291. https://doi.org/10.1631/jzus.A2300227

Mechanism of the UAD method

the equation for the motion trajectory of the cutting edge:

$$\begin{cases} x(t) = d \cos \frac{2\pi n}{60} t \\ y(t) = d \sin \frac{2\pi n}{60} t \\ z(t) = V_f t + A \sin(2\pi F t) \end{cases}$$

The cutting-edge movement in UAD is coupled by the rotation of the tool along the Z-axis and the ultrasonic vibration is applied to the tool feed direction

macroscopic motion trajectory of the cutting edge

Mechanism of non-separation type UAD

UAD experiment of CFRP/Ti stacks under dry conditions

	parameters	CD	UAD
Rotary Spindle	Cooling condition	无	无
shank Slip ring	Drilling diameter(mm)	7.5	7.5
Twist drill	Drilling depth (mm)	10	10
CFRP/Ti stacks	Vibrational frequency(Hz)	0	20020
Exture	Amplitude (µm)	0	10
Data acquisition system	Cutting speed (m/min)	15,25,35	15,25,35
9272A Dynamometer Charge amplifier	Feed rate (µm/r)	10,30,50,70	10,30,50,70

Experimental setup

Experimental conditions

Cutting force comparison

Thrust cutting forces with different feed rates Typical cutting force curve

Compared to conventional separation UAD, the non-separation UAD still effectively reduces the cutting forces by 24.2% and 1.9% for CFRP stage and 22.1% and 2.6% for the Ti stage at the feed rates of 50 and 70 μ m/r, respectively.

Hole diameter accuracy and Hole surface roughness

Hole diameter with different feed rates

Roughness with different feed rates

The non-separation UAD can significantly improve the hole diameter accuracy (11.8%–32.6% for CFRP and 9.3%–32.1% for Ti) and reduce the surface roughness (14.8%–19.3% for CFRP and 22.0%–40.1% for Ti).

Hole drilling damage

UAD

CD

Tool wear comparison

Tool wear after drilling 60 holes

The non-separation type UAD can reduce the adhesion of titanium alloy to the cutting tool due to its adhesion reduction characteristics.