
Lin and Liao / Front Inform Technol Electron Eng 2024 25(4):527-539 527

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

Towards sustainable adversarial training with successive
perturbation generation∗

Wei LIN1,3, Lichuan LIAO‡2

1College of Computer Science and Mathematics, Fujian University of Technology, Fuzhou 350118, China
2College of Economics and Management, Xi’an University of Technology, Xi’an 710048, China

3Fujian Provincial Key Laboratory of Big Data Mining and Applications,

Fujian University of Technology, Fuzhou 350118, China

E-mail: wlin@fjut.edu.cn; liaolijuan@xaut.edu.cn

Received July 12, 2023; Revision accepted Oct. 8, 2023; Crosschecked Feb. 23, 2024

Abstract: Adversarial training with online-generated adversarial examples has achieved promising performance in
defending adversarial attacks and improving robustness of convolutional neural network models. However, most
existing adversarial training methods are dedicated to finding strong adversarial examples for forcing the model to
learn the adversarial data distribution, which inevitably imposes a large computational overhead and results in a
decrease in the generalization performance on clean data. In this paper, we show that progressively enhancing the
adversarial strength of adversarial examples across training epochs can effectively improve the model robustness,
and appropriate model shifting can preserve the generalization performance of models in conjunction with negligible
computational cost. To this end, we propose a successive perturbation generation scheme for adversarial training
(SPGAT), which progressively strengthens the adversarial examples by adding the perturbations on adversarial
examples transferred from the previous epoch and shifts models across the epochs to improve the efficiency of
adversarial training. The proposed SPGAT is both efficient and effective; e.g., the computation time of our method
is 900 min as against the 4100 min duration observed in the case of standard adversarial training, and the performance
boost is more than 7% and 3% in terms of adversarial accuracy and clean accuracy, respectively. We extensively
evaluate the SPGAT on various datasets, including small-scale MNIST, middle-scale CIFAR-10, and large-scale
CIFAR-100. The experimental results show that our method is more efficient while performing favorably against
state-of-the-art methods.

Key words: Adversarial training; Adversarial attack; Stochastic weight average; Machine learning; Model
generalization

https://doi.org/10.1631/FITEE.2300474 CLC number: TP391.1

1 Introduction

Adversarial attacks (Moosavi-Dezfooli et al.,
2016; Papernot et al., 2016b; Kurakin et al., 2017;
Ding et al., 2021; Hu and Sun, 2021; Liu et al., 2022)
have been emerging as a significant threat to deep
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learning model robustness, which constitutes a rea-
son for alarm, since such attacks can fool the models
into arriving at wrong predictions through imper-
ceptible but maliciously manipulated perturbations,
i.e., adversarial examples, resultant to which there
arises a serious safety issue for concerning real-world
deployment of deep learning models (Cheng et al.,
2018; Eykholt et al., 2018; Finlayson et al., 2019;
Doan et al., 2020). To mitigate the adversarial at-
tacks, traditional methods leverage manual interven-
tion or prior assumptions to pick out the adversarial
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examples in the inference phase (Guo et al., 2017;
Buckman et al., 2018; Huang et al., 2019). However,
such defenses can be easily circumvented by stronger
attacks (Athalye et al., 2018). Alternatively, adver-
sarial training relies on online defending in lieu of
the hand-crafted detection pre-processing. It min-
imizes the loss on online-generated adversarial ex-
amples against the model at each training epoch,
forces the model to generate more robust features,
and thereby improves the model robustness.

To improve the efficiency, there are emerging ef-
forts to design efficient and scalable adversarial train-
ing methods. On one hand, some researchers work
on the single-step adversarial perturbation genera-
tion with fast gradient sign method (FGSM) (Good-
fellow et al., 2015) to relieve the computational over-
head. Despite the effectiveness of FGSM, the meth-
ods based on it generally suffer from catastrophic
overfitting due to the insufficient diversity of train-
ing samples. The dominant solutions employed to
address this problem include early stopping (Wong
et al., 2020), drop layers (Vivek and Babu, 2020),
and loss regularizations (Andriushchenko and Flam-
marion, 2020). On the other hand, some research
follows the idea of model compression to reduce the
model parameters and eliminate the additional train-
ing time. Typical methods include pruning (Madaan
et al., 2020), knowledge distillation (Papernot et al.,
2016a; Goldblum et al., 2020), and adversarial gen-
erator (Baluja and Fischer, 2018).

Although much effort has been made, there is
still a lack of specific efficient designs for adversarial
training methods considering the need to take ad-
vantage of consistency of adversarial examples and
models across training epochs. In particular, adver-
sarial training methods newly generate adversarial
examples and update model parameters via feedback
propagation at each epoch. Such a design can suffer
from two limitations. First, the generated adversar-
ial examples at each training epoch have high redun-
dancy. This statement can be supported by existing
methods (Zheng et al., 2020), where the adversar-
ial examples generated for one model can still stay
adversarial to another model trained on the same
dataset. As a result, the generation of discrete new
online adversarial examples may lead to a huge re-
dundancy and cost large additional computational
overhead. Second, the approach of newly generated
adversarial examples corresponding to every epoch is

characterized by a lack of consistent robust feature
representation generation when it comes to convolu-
tional neural network (CNN) models (Lecun et al.,
1998) trained on limited adversarial data, and this
generation is a feature well-known to be essential
for the maintenance of high accuracy on clean data.
According to Yang et al. (2020), most existing ad-
versarial training methods often lead to a significant
increase in the generalization error on clean testing
data.

To solve the above limitations, we propose a suc-
cessive perturbation generation scheme for adversar-
ial training (SPGAT), which successively generates
adversarial examples with a single-step attack and
shifts models across the training epochs to enhance
the efficiency of adversarial training. Specifically, we
first use the adversarial examples from the previous
epoch instead of the original input as the starting
point in the next epoch to accumulate the attack
strength. This design is reasonable based on two ob-
servations: (1) adversarial examples from adjacent
epochs are proved to have high transferability (Zheng
et al., 2020), and (2) recent studies show that it is
not necessary to use strong adversarial attacks in
the early stage of adversarial training because the
model is fragile. When the model becomes more ro-
bust as the training goes deeper, strong attacks are
needed for further improving the model robustness.
In contrast with Li et al. (2021), in which FGSM
attack was used in the early stage of training and
then it switched to project gradient descent (PGD)
attacks to enhance the attack strength, we propose
a more efficient successive adversarial example gen-
eration scheme to progressively accumulate the at-
tack strength via only FGSM attack. Second, to
preserve the generalization performance of trained
models under strong attacks, we further periodically
aggregate the models from the previous epochs to al-
leviate drastic model parameter change in the train-
ing process.

It needs to be emphasized that the proposed
SPGAT has several advantages, as indicated below:

1. It brings considerable computational savings
and improves the scalability of current adversarial
training methods. With a successive adversarial ex-
ample generation scheme, we do not need to generate
perturbations from the original input data iteratively
at each training epoch.

2. It naturally leads to a higher accuracy on
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clean testing data, similar to the stochastic weight
average (SWA) scheme (Izmailov et al., 2018) in net-
work optimization, which achieves an ensemble effect
with negligible additional computation cost.

3. It can be easily incorporated with these exist-
ing adversarial training methods where the proposed
scheme has no conflicts with these other methods.

We apply our proposed method on the CIFAR-
10 and CIFAR-100 (Krizhevsky and Hinton, 2009)
datasets and achieve impressive results. For exam-
ple, as can be seen in Fig. 1, our proposed method im-
proves the PGD-20 accuracy of WideResNet trained
with standard adversarial training (PGD-10) from
48.93% to 55.94% on the CIFAR-10 dataset. More-
over, compared with PGD-10 adversarial training
which consumes 4100 min, our SPGAT takes a sig-
nificantly lesser duration of time, at only 900 min.
Our contributions can be summarized as follows:

1. We propose a successive adversarial training
method that connects the adversarial examples and
shifts models across training epochs, which signifi-
cantly improves the efficiency and the generalization
performance of CNN models.

2. Extensive experiments show that, with com-
parable training time, our proposed method out-
performs the competitive baseline adversarial meth-
ods on image classification benchmarks, including
CIFAR-10 and CIFAR-100.

2 Related works

2.1 Adversarial attacks

Adversarial attacks have been emerging as one
of the significant reasons for compromise in the ro-
bustness of deep learning models, which constitute
a source of alarm, because given a well-trained task
model and a clean input image, adversarial attacks
try to fool the task model with a similar-looking
but maliciously hand-crafted version of the original
image (Carlini et al., 2017). Recent studies con-
cerning adversarial attacks can be divided into two
categories: optimization-based attacks and gradient-
based attacks.

1. Optimization-based attacks. Szegedy et al.
(2014) first proposed a method for both distilled
and undistilled models by solving the optimization
problem with limited memory Broyden–Fletcher–
Goldfarb–Shanno (L-BFGS). Zhang JB et al. (2022)
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Fig. 1 Training time and PGD-20 accuracy of the
WideResNet model trained on the CIFAR-10 dataset
using different adversarial training methods (With
comparable training time, our proposed SPGAT sur-
passes state-of-the-art ATTA-1 by 6% in the PGD-20
accuracy)

further extended the BFGS algorithm for limited
pixel attack, and proposed the limited pixel BFGS
(LP-BFGS) attack method. Chen PY et al. (2017)
proposed a zero-order optimization algorithm to es-
timate the gradient by performing finite difference
on the query results.

2. Gradient-based attacks. Goodfellow et al.
(2015) proposed the FGSM algorithm requiring only
one step of gradient update and achieved state-of-
the-art (SOTA) results. Madry et al. (2018) trans-
formed the one-step generation manner into multi-
step one and proposed PGD, which has become one
of the most popular attack methods. Croce and Hein
(2020) further ensembled the gradient-based attack
into a stronger attack, termed as AutoAttack (AA),
which has been recognized as the strongest attack so
far. Yamamura et al. (2022) employed the conjugate
gradient (CG) method to enhance the search pro-
cess of gradient descent, thereby avoiding the non-
convexity and non-linearity issues presented in ex-
isting gradient descent techniques. As a result, they
achieved SOTA results on large-scale datasets.

Both gradient- and optimization-based attacks
are designed to generate model-specific adversarial
examples. Szegedy et al. (2014) demonstrated the
transferability of adversarial examples; i.e., an adver-
sarial example generated from one target model can
also disturb other models. An amount of research has
been devoted to improving the transferability of ad-
versarial examples. Specifically, Dong et al. (2018)
proposed MI-FGSM by adding a momentum term
to the iterative process, yielding a high attack effi-
ciency. Wang et al. (2021) argued that brute-force
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degradation would introduce model-specific local op-
timum into adversarial examples, thus limiting the
transferability. Hence, they proposed the feature
importance-aware attack (FIA), which disrupts im-
portant object-aware features that dominate model
decisions consistently. Chen B et al. (2023) devel-
oped an adaptive ensemble transfer attack to boost
the transferability across models with wide differ-
ences, such as from CNNs to vision Transformers
(ViTs).

2.2 Adversarial training

The vulnerability of CNN models to adversar-
ial examples has motivated studies into adversarial
training. The initial idea of adversarial training is
brought to light by Madry et al. (2018), in which
CNN models were trained on a mixture of adver-
sarial examples and clean examples to improve the
model robustness. Goodfellow et al. (2015) proposed
FGSM to produce strong adversarial examples dur-
ing training. However, these methods remain vul-
nerable to stronger iterative attacks. Recent studies
proposed the training of CNN models with adver-
sarial data only and formed the training process as
a game between adversarial example strength max-
imization and model loss minimization. To gener-
ate strong adversarial examples, current adversar-
ial training methods can be divided into two cate-
gories: iterative-based methods and ensemble-based
methods.

1. Iterative-based methods. These methods en-
hance the strength of adversarial examples through
iterative accumulation. Madry et al. (2018) first pro-
posed the iterative gradient-based attack PGD-k for
accumulating the attack strength and significantly
increased the model robustness against adversarial
examples. Following this design, derivative meth-
ods have been further developed. Cai et al. (2018)
proposed curriculum adversarial training (CAT) to
gradually increase the iteration step number (i.e.,
the value of k) of PGD until the model achieves a
high accuracy against the current attack. Contrar-
ily, friendly adversarial training (FAT) (Zhang JF
et al., 2020) employs early stopping when perform-
ing PGD iterations to realize the training process
in a more practical way. In general, iterative-based
methods can generate strong adversarial examples
but are faced with high computation cost due to the
iterative calculation at each training epoch.

2. Ensemble-based methods. These methods
introduce ensemble learning into the adversarial
training process, where individually non-robust sub-
models that produce diverse outputs are assembled
to improve the overall robustness. Tramer et al.
(2018) first proposed ensemble adversarial training
(EAT), in which the adversarial examples were gen-
erated from a pre-trained model instead of the cur-
rent model. To further promote the diversity of fea-
tures among target models, Pang et al. (2019) pro-
posed an adaptive diversity promoting regularizer
to force different methods prefer diverse predictions.
Kariyappa and Qureshi (2019) proposed the max-
imization of the cosine similarity among the input
gradients of each sub-model. Yang et al. (2020) mea-
sured the feature overlapping to diversify the vulner-
ability in each sub-model in EAT.

Nevertheless, constituents of existing literature
all focus on maximizing the attack strength without
considering the computation cost for practicability.
In the present study, we propose simple yet effective
modifications to improve the efficiency of current ad-
versarial training methods.

2.3 Efficient adversarial training

The key efficiency bottleneck of standard adver-
sarial training is that the iterative generation of ad-
versarial examples has quadratic memory and com-
putational complexity. Thus, many attempts are
proposed to relieve the computational overhead by
simplifying the inner maximization process. Specif-
ically, free adversarial training proposed by Shafahi
et al. (2019) reuses the gradients in forward pass,
and thus model parameters and image perturba-
tions can be updated simultaneously. Based on
free adversarial training, Wong et al. (2020) further
proposed fast adversarial training, in which single-
step FGSM was initialized randomly to reduce the
magnitude of perturbations. However, it is found
that single-step adversarial training generally suf-
fers from catastrophic overfitting due to the lack of
diverse training examples. To alleviate the overfit-
ting, many improvements have been proposed, such
as early stopping (Wong et al., 2020), drop lay-
ers (Vivek and Babu, 2020), and loss regulariza-
tions (Andriushchenko and Flammarion, 2020).

Another line taken by studies in the literature is
the adoption of model compression to reduce the ad-
versarial examples and computational overhead. For
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example, Madaan et al. (2020) proposed a Bayesian
framework to prune features with high vulnerability
to enhance the robustness of CNN models. Zheng
et al. (2020) used the transferability of adversarial
examples across the training epochs and proposed to
reuse the adversarial examples to reduce the gener-
ation time. Papernot et al. (2016a) extracted the
distilled knowledge from CNN models to reduce the
amplitude of network gradients exploited by adver-
saries to craft adversarial samples. These methods
can slightly reduce the training time, but they ne-
glect to consider the generalization performance on
clean datasets and are thus incapable of handling
model training on large datasets. To bridge this gap,
we propose a successive single-step perturbation gen-
eration regime that can improve the robustness of
CNN models while significantly reducing the com-
putation cost.

3 Method

In this section, we first briefly revisit the pre-
liminaries of adversarial training and then introduce
our proposed method.

3.1 Preliminaries

For a given network f parameterized by θ,
L(fθ, x, y) denotes the loss of the network on the
example (x, y) ∼ D, where D is the data generating
distribution. The formulation of adversarial training
can be represented as follows:

min
θ

E(x,y)∼D[max
xadv

L(fθ, xadv, y)], (1)

where xadv denotes the adversarial example, and is
obtained by adding a perturbation δ over the original
data x:

xadv = x+ δ s.t. δ ∈ S, (2)

where S denotes the region within the ε-perturbation
range under the �∞ threat model for each example,
i.e., S = {δ : ‖δ‖∞ ≤ ε}, where the adversary can
change the input coordinate xi at most ε.

In brief, the basic idea of adversarial training
is a min–max optimization, which, given the image
data x, involves the objective of finding a pertur-
bation δ that maximizes the model loss on x + δ.
Then the model is trained on the generated adver-
sarial example xadv to minimize the loss. Instead of

solving non-concave optimization independently, ad-
versarial attacks are usually used to approximate the
internal maximization over S. There are two adver-
sarial training methods: FGSM attack and PGD-k
attack.

1. FGSM attack. Goodfellow et al. (2015) per-
formed single-step gradient descent to find adversar-
ial perturbations xadv to approximate the internal
maximization, which is formalized as follows:

xadv = x+ ε · sign(∇xL(fθ, x, y)). (3)

The use of the single-step generation scheme ensures
that the FGSM adopted in their study is fast, al-
though it can easily lead to overfitting as observed
in Wong et al. (2020).

2. PGD-k attack. Madry et al. (2018) used
multi-step PGD to approximate the inner maximiza-
tion, an approach that offers greater accuracy com-
pared with FGSM but is computationally expensive,
formalized as follows:

xadv
t+1 = Πx+S(xadv

t + α · sign(∇xL(fθ, x, y))), (4)

where xadv
t is initialized as the clean input x, and

Π refers to the projection operation, which ensures
projecting the adversarial examples back to the ball
within the radius ε of the clean data point. PGD-
k denotes the k-step PGD adversarial attack; the
larger the k, the stronger the attack and the higher
the computation cost.

3.2 Successive adversarial training

In the present study, we propose the SPGAT
method to progressively enhance the attack strength
of adversarial examples and encourage the robust
feature generation for improving the efficiency of
adversarial training. An overview of our proposed
method is shown in Fig. 2. Unlike in standard adver-
sarial training, where adversarial examples are gen-
erated from the original input in each training epoch,
shown in Fig. 2a, we propose to successively generate
adversarial examples and shift models from previous
epochs, shown in Fig. 2b.

3.2.1 Adversarial example generation

Recent studies (Wei et al., 2019; Zhu et al., 2019)
on adversarial training show that the adversarial ex-
amples generated from adjacent epochs tend to carry
similar adversarial information. Therefore, it would
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Fig. 2 Standard adversarial training process where the adversarial examples are generated from the orig-
inal input at each epoch (a) and details of the proposed SPGAT method, which successively generates the
adversarial examples and shift models from adjacent epochs (b)

be beneficial to reduce these redundancies for im-
proving efficiency. Motivated by Zheng et al. (2020),
for epoch n+1, we use the adversarial examples gen-
erated in epoch n as the starting point to generate
the adversarial examples, which can be represented
as

xadv
n+1 = A(fθn , x, y,M(xadv

n )), (5)

where A is the attack algorithm, corresponding to
which the present study uses, FGSM attack, fθn is
the model in the nth epoch, and M is a transforma-
tion function, which transforms xadv

n into xn+1 as the
starting input for the next epoch.

To adapt the perturbation on the newly aug-
mented images in each epoch, we adopt the inverse
data augmentation technique used in Zheng et al.
(2020) to enhance the transferability of the adversar-
ial examples. Specifically, the inverse transformation
T−1(·) is adopted to calculate the inverse perturba-
tion T−1(∇n) on the newly augmented image xaug.
By adding T−1(∇n) to xaug, we can store and trans-
fer all perturbation information for the next epoch.
The process can be described as

M(xadv
n ) = T−1(∇n) + xadv

n . (6)

Note that to ease the effect of early perturba-
tions, we follow the method adopted in Zheng et al.
(2020) to reset the perturbation and let adversarial
perturbations be accumulated from the beginning
periodically.

3.2.2 Model updates

Previous studies update the model parameters
by minimizing the loss on online-generated adver-
sarial data as described in Eq. (1). However, such a
scheme relies solely on the generated adversarial data
with limited capacity while neglecting the consistent
robust feature generation in CNN models, leading a

decrease in the generalization performance on clean
data. Moreover, due to the lack of diverse training
samples, the model parameters usually suffer from
drastic change during the training process, which can
easily cause the problem of overfitting. To this end,
we propose to shift the trained models across train-
ing epochs to further boost the model robustness on
clean data and alleviate the overfitting. Specifically,
we adopt the SWA model updating scheme (Izmailov
et al., 2018), where the model weights generated from
previous epochs are aggregated to the average and
the model is updated with the averaging weight pe-
riodically. The process can be represented as follows:

θswa =
θswaT + θ

T + 1
, (7)

where T is the number of models to be aggregated,
which is also referred to the shift cycle. Note that
to generate the adversarial examples properly in for-
ward pass, the batch normalization statistics in the
network are recalculated every time corresponding
to the resetting of the perturbation accumulation.

3.2.3 Training routine

The overall training pseudo code is provided in
Algorithm 1. We first initialize the perturbation
δ randomly from a uniform distribution within the
range of (−ε, ε). Then for each batch of training data
during the training process, we generate the adver-
sarial examples in each epoch following the function
of Eq. (5) to accumulate the attack strength. Note
that we use FGSM as the adversarial attack in the
perturbation generation. Backward propagation is
then performed on the trained model to update the
model parameters. To make the training process
more stable and escape from overfitting, we period-
ically update the model parameters by Eq. (7) and
reset the perturbation for accumulating attack from
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the beginning. This training process is performed on
all B batches of training data for N epochs.

Algorithm 1: Successive perturbation gen-
eration scheme for adversarial training

Input: training data D = {X,Y }, perturbation
boundary ε, shift cycle T ,
hyperparameter C

Output: trained model f with parameter θ

Initialize δ from a uniform distribution within
(−ε, ε)
for epoch = 1, 2, ..., N do

for i = 1, 2, ..., B do
δi ← δi + α · sign(∇δiL(fθ, xi + δi, yi))

δi ← max(min(δi, ε),−ε)
xadv
i ←M(xadv

i−1) + δi

θ ← θ −∇θ
∂L(fθ,x

adv
i ,yi)

∂θ

if epoch % T = 0 then
θswa ← θswa·t+θ

t+1

t← t+ 1

if epoch % C = 0 then
t← 0

fθswa ← UPDATE_BN(fθswa ,D, δ)
fθ ← fθswa

xadv
i ← xi

return fθ

4 Discussion

4.1 Analysis of adversarial example genera-
tion

In standard adversarial training, adversarial ex-
amples are generated from clean data using strong
attacks in each epoch. In this study, we demonstrate
the gradual accumulation of the attack strength by
successively generating adversarial examples with a
single-step FGSM attack. Specifically, we take the
adversarial examples generated in the last epoch as
the starting point in the next epoch to generate new
adversarial examples. To verify the fact that such
successive generation schemes can effectively accu-
mulate adversarial attack strength, we train models
on the MNIST and CIFAR-10 datasets with FGSM
attacks and evaluate the accuracy and loss values
of the model by using adversarial examples gener-
ated from accumulated attacks. The experimental
results are reported in Fig. 3. It can be observed that
when there is no accumulation (accumulation epoch
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Fig. 3 Performance comparison of attack strength
accumulation through epochs (Solid lines denote the
accuracy, y-axis on the left, and dash lines denote the
loss values, y-axis on the right)

= 0), i.e., when the adversarial examples are gen-
erated from clean data, the robustness of the model
achieves 56% on the CIFAR-10 dataset. With the in-
crease in the number of accumulational adversarial
perturbations, the accuracy of the CIFAR-10 model
decreases rapidly, and the corresponding adversarial
attack loss increases. This indicates that the adver-
sarial examples generated in the successive manner
can effectively enhance the attack strength even with
single-step FGSM, which allows us to achieve signif-
icant savings in terms of computation cost resultant
to the removal of time-consuming iterative perturba-
tion generation in each epoch.

When compared to the adversarial training with
transferable adversarial examples (ATTA) method,
the study that is most closely related to our research
is Zheng et al. (2020). This work involved trans-
ferring adversarial examples from the final epoch to
serve as the starting point in the subsequent epoch,
followed by the application of a PGD attack to pro-
gressively strengthen the attack. However, this study
focused only on finding strong adversarial examples
without considering the generalization ability of the
studied model, leading to a significant decrease in
clean data. To better fit the successive generation
scheme in adversarial training, we elaborately in-
volve model shifting in our SPGAT to avoid dras-
tic model parameter change. Moreover, we use only
FGSM attack in our SPGAT to make it suitable for
model training, since weak adversarial examples are
enough for the early stage of training; however, as the
training goes deeper, the adversarial examples get
stronger via accumulation from previous epochs, and
this enables the training exercise to produce more
robust models. Please refer to the ablation study in
Section 5.3 for more comparisons and analysis.
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4.2 Analysis of model shifting

Traditional adversarial training augments the
datasets with adversarial samples to encourage the
model to learn the adversarial sample distribution;
however, this also leads to a poor generalization abil-
ity of the model. Taking ATTA as an example, we
observe that the robust accuracy against PGD-20
achieved 10% improvements over standard adversar-
ial training but the natural accuracy dropped by 5%,
as reported in Zheng et al. (2020). When the SPGAT
explained in the present study is applied, the robust
accuracy increases by 12% and the clean accuracy
increases by 3% over standard adversarial training,
as shown in Fig. 1. The model shifting equips our
SPGAT with strong generalization ability in terms of
the performance on clean data. Such an endowment
provides benefits in terms of two resources: (1) The
model is encouraged to learn more towards the distri-
bution of adversarial samples in adversarial training
since the model is trained only on adversarial data.
Therefore, it would be beneficial to involve model
characteristics from previous epochs in our method.
(2) The model from a different epoch can be seen
as a different version that produces different feature
representations, and hence aggregating the trained
models from different epochs can be analogous to
the ensemble skills in ensemble learning for eliminat-
ing overfitting on a limited amount of training data.
More experimental data are provided in the ablation
study in Section 5.3.

5 Experiments

5.1 Experimental setup

1. Architecture and datasets. Following previ-
ous studies (Madaan et al., 2020; Zheng et al., 2020),
we use WideResNet34 as our defalut model architec-
ture, and train the model on two popular benchmark
datasets: CIFAR-10 and CIFAR-100. The CIFAR-
10 dataset consists of 60 000 32 × 32 color images
within 10 classes, with 6000 images per class. There
are 50 000 training images and 10 000 test images.
The CIFAR-100 is just like the CIFAR-10, except
that it has 100 classes containing 600 images each,
and contains 500 training images and 100 test images
per class.

2. Adversarial attacks. For the adversarial at-
tacks, we generate the adversarial examples by PGD

attack using an l∞ threat model with 20 steps for the
CIFAR-10 and CIFAR-100 datasets. The maximum
perturbation ε is fixed at 0.031, with the step size of
2ε/k, where k is the iteration number.

3. Compared methods. We compare the perfor-
mance of our proposed SPGAT with those of well-
known SOTA methods including standard PGD-10
adversarial training, FREE (m = 8) (Shafahi et al.,
2019), which uses single-step FGSM with eight hop
steps, and ATTA-k (Zheng et al., 2020), which is the
most pertinent research working in k-step iteration
PGD adversarial training with transferable adver-
sarial examples. Here, we set k = 1 and 10 in ATTA
for fair comparison. All the compared methods are
performed using the default codes and settings as
mentioned by the respective authors.

4. Training details. In our experiments, we train
models on the CIFAR-10 and CIFAR-100 datasets
for 200 epochs using a stochastic gradient descent
(SGD) optimizer with the initial learning rate reck-
oned as 0.1, and the decay is established by a factor
of 0.1 at 50% and 75% of the total epoch. We use the
batch size of 64 for all the experiments. In our pro-
posed SPGAT, the checkpoint of the 160th epoch is
chosen as the initial point of model shifting, which is
similar to that of the SWA scheme applicable in the
case of network optimization. The adversarial exam-
ples are generated by the single-step attack FGSM
for training during the whole training process. All
the experiments are implemented using PyTorch on
an Intel Core i9 processor with 32 GB of memory
and an NVIDIA TITAN Xp GPU.

5.2 Main results

5.2.1 White-box attacks

We first conduct a series of white-box strong
adversarial attacks to evaluate the efficiency and ro-
bustness of the trained models: PGD with 20 and 50
iterations on cross-entropy loss (PGD-k), Carlini–
Wagner loss (CW-k) (with a step size of 2ε/k, where
k represents the number of iterations), and AA
(which has been recognized as the strongest attack
so far). The confidence parameter of the CW loss is
set at 50. We report the robust accuracy and train-
ing time of the final trained model in Table 1. As
we can see, stronger adversarial example generation
during adversarial training can lead to better model
robust accuracy. With our successive adversarial



Lin and Liao / Front Inform Technol Electron Eng 2024 25(4):527-539 535

example generation, the model trained with SPGAT
achieves the robust accuracies of 55.94% and 27.45%

against PGD-20 on the CIFAR-10 and CIFAR-100
datasets, respectively. Compared to baselines, our
SPGAT achieves around 5% better robust accuracy
than ATTA-1 with comparable training time. It has
been indicated in the literature that ATTA-10 had
a better robust accuracy than ATTA-1, a finding
consistent with our observations. However, the time
consumption involved in PDG-10, FREE, and ATTA
is, on average, about two times greater than ours.
More importantly, concomitant with the increase of
model robust accuracy with the use of different ad-
versarial training methods, the natural accuracy on
clean testing data decreases. This is because the
models trained on strong adversarial examples are
encouraged to learn the adversarial sample distribu-

tion, which thus leads to poor generalization abil-
ity of these models on clean data. With the model
shifting to relieve the model change, our proposed
SPGAT can maintain high accuracy on clean data,
as evidenced from the fact that the natural accura-
cies achieved 88.90% and 61.94% on the CIFAR-10
and CIFAR-100 datasets, respectively.

5.2.2 Unseen adversaries

We also evaluate our approach against unfore-
seen adversaries, e.g., robustness on different attack
threat radii ε, or even on different norm constraints
(e.g., l2 and l1). The results are reported in Table 2.
It can be observed that compared with SOTA meth-
ods, the proposed SPGAT could effectively improve
the robustness against l∞ and l2 adversaries on
both the CIFAR-10 and CIFAR-100 datasets. For

Table 1 Robust accuracy of models trained with PGD-10, FREE, ATTA, and SPGAT without early stopping
on the CIFAR-10 and CIFAR-100 datasets

Dataset Method
Accuracy (%)

Time (s)
Natural PGD-20 PGD-50 CW-20 CW-50 AA

PGD-10 85.23 48.93 48.63 48.74 48.28 44.12 1235.10
FREE (m=8) 85.75 45.76 45.52 44.95 44.45 41.05 128.16

CIFAR-10 ATTA-1 83.36 50.05 49.90 49.02 48.75 45.64 263.34
ATTA-10 84.43 54.65 53.74 54.25 54.01 50.79 1425.79
SPGAT (ours) 88.90 55.94 55.80 54.96 54.71 52.16 269.79

PGD-10 60.29 26.84 26.44 26.44 26.25 22.48 1234.11
FREE (m=8) 60.11 26.79 22.66 25.69 25.60 21.19 127.59

CIFAR-100 ATTA-1 59.07 21.58 22.82 21.14 20.92 17.56 262.68
ATTA-10 55.09 23.23 23.00 22.85 22.73 19.88 1429.49
SPGAT (ours) 61.94 27.45 27.09 28.33 27.90 23.95 270.41

All statistics are evaluated against PGD/CW attacks with 20/50 iterations and a random restart for ε = 8/255. We highlight
the best results in bold and the second-best with underline

Table 2 Robust accuracy of WideResNet34 trained with l∞ of ε = 8/255 boundary against unseen attacks

Dataset Method
Accuracy (%)

l∞ l2 l1

ε=4/255 16/255 150/255 300/255 2000/255 4000/255

PGD-10 67.92 21.52 52.49 24.93 67.36 46.99
FREE (m=8) 64.66 15.94 51.86 26.74 64.15 46.56

CIFAR-10 ATTA-1 67.99 16.95 58.85 28.50 72.47 57.97
ATTA-10 69.94 22.43 58.15 28.09 70.91 53.89
SPGAT (ours) 70.66 42.43 59.28 44.97 70.99 56.70

PGD-10 40.67 9.96 30.69 12.99 42.43 28.24
FREE (m=8) 42.50 8.74 34.63 15.75 46.32 34.82

CIFAR-100 ATTA-1 35.18 13.28 26.77 15.73 39.10 26.32
ATTA-10 36.17 12.45 25.50 13.65 36.10 23.06
SPGAT (ours) 42.70 13.44 32.74 16.22 45.72 31.96

For unseen attacks, we use PGD-50 under different sized l∞ balls and other types of norm ball, e.g., l2 and l1. We highlight
the best results in bold and the second-best with underline
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l1 adversaries, ATTA-1 achieves the best result on
the CIFAR-10 dataset but its performance degrades
dramatically on the large-scale CIFAR-100 dataset.
Similarly, FREE (m = 8) has the best result on
the CIFAR-100 dataset but not on the CIFAR-10
dataset. This reveals the instability and limitations
of these methods. Contrarily, our proposed SPGAT
can have stable and comparable performance on both
datasets.

5.2.3 Black-box transfer attacks

To evaluate the effectiveness of our proposed
SPGAT in practical defense scenarios, we test the
model under black-box transfer attacks, where ad-
versarial examples are generated from a source model
and then are transferred to the target model. In this
evaluation, adversarial examples are crafted from
PreActResNet18 (source model) trained with stan-
dard adversarial training, where we consider FGSM,
PGD-50, and CW-20 as black-box adversaries. Then
we perform a black-box transfer attack evaluation on
WideResNet34-10 (target model). The results are
provided in Table 3, where we can find that black-
box transfer attacks are always substantially weaker
than white-box attacks, which is consistent with the
observations drawn in Madry et al. (2018). It is inter-
esting to find that with the increase of k in the ATTA
method, the robust accuracy tends to decrease. One
possible reason is that iterative adversarial exam-
ples generated in the source model can have a higher
transferability to the iterative adversarial examples
generated in the target model, since more redun-
dancy information is contained. Compared to base-
lines, our method still achieves the best robustness
under black-box attacks.

5.3 Ablation study

5.3.1 Effect of using different adversarial attacks in
perturbation generation

We use different adversarial attacks in our
SPGAT method and show the results in Table 4.
Note that k = 1 denotes the FGSM attack, and this
is equivalent to our method. From the results, we
can see that the models trained with more itera-
tive steps are characterized by a small decrease in
PGD-20 accuracy together with a much higher com-
putation cost. It indicates that stronger adversarial
examples do not necessarily lead to better adversar-

Table 3 Robust accuracy of the WideResNet34-
10 model trained on the CIFAR-10 and CIFAR-100
datasets against black-box transfer attacks, with ad-
versarial examples being crafted from PGD-10 pre-
trained PreActResNet18

Dataset Method
Accurary (%)

FGSM PGD-50 CW-20

PGD-10 67.59 67.58 78.11
FREE (m=8) 68.02 66.19 77.49

CIFAR-10 ATTA-1 68.85 65.25 77.79
ATTA-10 66.82 66.27 77.79
SPGAT (ours) 71.34 70.21 83.03

PGD-10 42.71 42.13 56.55
FREE (m=8) 41.70 40.81 56.51

CIFAR-100 ATTA-1 42.19 41.88 54.77
ATTA-10 40.63 39.79 50.74
SPGAT (ours) 46.26 45.93 59.55

We choose l∞ threat model with ε = 8/255 for FGSM and
PGD-50. Specially, for CW-20, ε is fixed to 160/255

Table 4 Performance comparision with the use of
PGD attacks with different k in SPGAT

k
Accurary (%)

Training time (min)
PGD-20 AA

1 55.94 51.60 900.12
3 54.67 50.92 1990.23
5 53.47 49.34 2653.59
7 53.39 49.15 3560.12
10 53.43 49.20 4903.11

ial robustness. The main reason is that excessive
perturbation on data may impede the model robust-
ness since the model is fragile in the early stage of
training. In the SPGAT method discussed in the
present study, progressive enhancement of the ad-
versarial attack strength, which is more suitable for
model training, has been adopted.

5.3.2 Effect of model shifting

One of the important advantages of the pro-
posed SPGAT is that we aggregate the models peri-
odically to improve the stability of the models. To
validate the effectiveness of model shifting, we train
the model with different aggregation periods T and
show the results in Fig. 4. Note that T = 0 de-
notes the adversarial training method without model
shifting. With the increase of T , the trained model
achieves better performance in both clean data and
adversarial data. The performance gains mainly
come from the involving of model characteristics
from previous epochs. Applying model shifting with
negligible computation cost can significantly improve
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Fig. 4 Clean and adversarial robust accuracy of the
model trained on the CIFAR-10 dataset with our pro-
posed SPGAT for different shifting periods T

the generalization ability of the trained models. The
robust accuracy reaches its peak at T = 16; when the
value of T continues to get larger, the clean accuracy
maintains almost the same value, but the robust ac-
curacy decreases. This is because the more models
are aggregated, the ability for robust information ex-
traction would be smoothed. We set T = 16 through-
out the experiments to obtain the best performance.

5.3.3 Effect of adversarial perturbation resetting

During the successive adversarial example gen-
eration process, we reset the perturbation and let
adversarial perturbations be accumulated from the
beginning periodically to avoid potential error accu-
mulation. In the experiments, we generally follow
Zheng et al. (2020) in setting the reset period C as
10. Here we further investigate the effect of C on
the overall model performance. Specifically, we test
the model performance using different values of C

and report the results in Table 5. Note that C = 0

denotes the accumulation of the adversarial pertur-
bations throughout the whole training process. As
we can see, if the adversarial perturbations are not
reset during the training, the model performance sig-
nificantly degrades. This is because that only models
do not easily changes during training, the perturba-
tion transferability would be decreased as the train-
ing goes deeper and the model parameters are largely
changed. As the adversarial perturbation resetting
is adapted, both the clean and robust accuracies are
improved. When the value of C gets larger, the ro-
bust accuracy improves before 15 and the clean accu-
racy decreases after 10. This is because the adversar-
ial examples are stronger when C is larger, thereby
leading to a decrease in clean accuracy, and the po-

Table 5 Clean and adversarial robust accuracy of the
model trained on the CIFAR-10 dataset with our pro-
posed SPGAT for different perturbation reset periods
C

C
Accuracy (%)

Clean FGSM PGD-20 CW-20 AA

0 78.64 52.62 41.25 41.03 37.88
5 88.65 60.61 52.73 52.18 47.62
10 88.90 63.25 55.94 54.96 52.16
15 87.39 63.27 55.91 54.69 52.17
20 85.57 63.02 55.99 54.75 51.29
25 83.36 61.31 53.64 53.55 49.92

tential error also accumulates, with the result that
the robust accuracy is not improved constantly. We
use the value of 10 in the experiments to achieve the
trade-off.

6 Conclusions

In this paper, we present SPGAT for improv-
ing the robustness of CNN models. Specifically, the
SPGAT successively generates the adversarial exam-
ples with a single-step attack and shift models across
the training epochs to enhance the efficiency of ad-
versarial training. More importantly, this strategy
greatly improves the generalization ability of mod-
els, thus imbuing them with the ability to maintain
high accuracy on clean data. In the experiments, our
proposed SPGAT demonstrates outstanding perfor-
mances under various attacks, including white-box
attacks, unseen adversaries, and black-box attacks
with comparable training time.
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