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Abstract: This paper deals with the search-and-rescue tasks of a mobile robot with multiple interesting targets
in an unknown dynamic environment. The problem is challenging because the mobile robot needs to search for
multiple targets while avoiding obstacles simultaneously. To ensure that the mobile robot avoids obstacles properly,
we propose a mixed-strategy Nash equilibrium based Dyna-Q (MNDQ) algorithm. First, a multi-objective layered
structure is introduced to simplify the representation of multiple objectives and reduce computational complexity.
This structure divides the overall task into subtasks, including searching for targets and avoiding obstacles. Second,
a risk-monitoring mechanism is proposed based on the relative positions of dynamic risks. This mechanism helps the
robot avoid potential collisions and unnecessary detours. Then, to improve sampling efficiency, MNDQ is presented,
which combines Dyna-Q and mixed-strategy Nash equilibrium. By using mixed-strategy Nash equilibrium, the agent
makes decisions in the form of probabilities, maximizing the expected rewards and improving the overall performance
of the Dyna-Q algorithm. Furthermore, a series of simulations are conducted to verify the effectiveness of the proposed
method. The results show that MNDQ performs well and exhibits robustness, providing a competitive solution for
future autonomous robot navigation tasks.
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1 Introduction

With the rapid advancement of artificial in-
telligence technology, the application of a robot is
progressively shifting toward intelligence-oriented di-
rections. Researchers study various applications of
robot systems to accomplish difficult tasks, such as
search and rescue and logistics (Geng et al., 2019), as
shown in Fig. 1. The utilization of a mobile robot is
becoming increasingly widespread in various applica-
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tions such as search and rescue, exploring underwater
resources (Zheng Z et al., 2016; Geng et al., 2019),
and the Mars exploration project (Wakayama and
Ahmed, 2020). In addition, there are some specific
types of tasks (Li CH et al., 2019), such as patrolling
(Martins-Filho and Macau, 2007; Hwang et al., 2011;
Banerjee et al., 2015), surveillance (Curiac et al.,
2018), and demining (Prado and Marques, 2014),
which require not only finding all targets but also
avoiding patrolmen and other dynamic objects.

The above applications all involve the key issue
of collecting targets while avoiding obstacles. The
problem is complex due to the constraints of lim-
ited response time, an unstable environment, and
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the need for multiple candidate search modes (Hong
et al., 2021). In recent years, many search plan-
ning methods have been proposed. Numerous ex-
periments have been conducted to validate their ef-
fectiveness (Brito et al., 2019; Gaertner et al., 2021;
Hubert et al., 2021; Liu Z et al., 2023; Luo et al.,
2023). However, some works show a low exploration
rate, which should be further improved for dynamic
real-world applications (Lu YM and Kamgarpour,
2020; Gaertner et al., 2021; Nasar et al., 2023). In
addition, several methods aim to investigate motion
using the greedy algorithm. The techniques include
maximizing instant information acquisition or navi-
gating toward the closest unknown region (Wu YX
et al., 2019; Liu YY et al., 2022; Pei et al., 2022). Al-
though the greedy strategy may seem efficient in the
short term, it often fails to achieve global optimality
(Zou et al., 2020; Hayamizu et al., 2021). Moreover,
numerous methods exhibit significant computational
overhead and necessitate prompt and frequent adap-
tation to environmental fluctuations (Brito et al.,
2021; Padakandla, 2021).

To address the above issues, we propose
a mixed-strategy Nash equilibrium (MNE) based
Dyna-Q (MNDQ) algorithm to solve the search-and-
rescue problem in unknown dynamic environments.
Our approach involves decomposing the problem to
reduce computational complexity. Additionally, we
incorporate the game theory into the improved algo-
rithm, enabling the selection of optimal samples that
maximize expected rewards. The effectiveness of our
proposed algorithm is supported by theoretical anal-
ysis and simulation results. The main contributions
are as follows:

1. We develop a multi-objective layered struc-
ture with the aim of simplifying the complexity of
multi-objective problems. The design is based on a
layered approach, where each subtask focuses solely
on its own states and actions. This approach allows
us to reduce the computational complexity of the
overall problem.

2. We propose a risk-monitoring mechanism that
relies on the relative position of dynamic risks to aid
in decision-making. The state of these dynamic risks
is expressed using the Manhattan distance and rela-
tive orientation. This mechanism assists in creating
an intuitive environment model, which helps prevent
potential collisions and unnecessary detours.

3. To maximize rewards, we incorporate the

principles of game theory into our approach. We
introduce a method called MNDQ, which combines
reinforcement learning (RL) with Dyna-Q and MNE.
The MNE policy is proposed to enable the robot to
choose better state–action pairs for learning. The
simulation results show that the proposed method
performs satisfactorily in terms of convergence prop-
erty and learning efficiency.

Initial location

Robot

Patrolman

Exit

Target 1 Target 2

Target 3

Fig. 1 Robot search-and-rescue task

2 Related works

2.1 Autonomous exploration algorithms

Online autonomous exploration in unknown dy-
namic environments attracts significant interest, par-
ticularly in the context of search-and-rescue plan-
ning. Typically, autonomous exploration methods
are broadly classified into two types: classic meth-
ods and learning-based methods. Classic meth-
ods encompass optimization techniques, rule-based
approaches, and evolutionary algorithms (Ng and
Bräunl, 2007; McGuire et al., 2019; Patle et al.,
2019; Aggarwal and Kumar, 2020; Wyrąbkiewicz
et al., 2020; Hong et al., 2021). Classic methods
cannot deal with emergencies or extract informa-
tion from perception and analysis of the environ-
ment, especially in unknown dynamic environments.
Learning-based methods use machine learning tech-
niques, such as deep learning, transfer learning, and
RL (Chiu et al., 2021; Li ZR et al., 2022; Li HQ et al.,
2023).

When confronted with a complex and dynamic
environment, RL-based methods help the robot ob-
tain feedback and control through real-time inter-
active measurement of the environment without
any prior knowledge. RL offers numerous advan-
tages over traditional algorithms (Faust et al., 2018;
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Jaderberg et al., 2019; Ohnishi et al., 2019; Li HR
et al., 2020; Chiu et al., 2021). Zheng KY et al.
(2021) solved the search problem by using a multi-
resolution planning algorithm based on an online
Monte Carlo tree search. Lu YL and Yan (2020)
considered safe task planning in uncertain dynamic
environments and devised a Monte Carlo method to
obtain a safe path efficiently. Gregor et al. (2018)
proposed a visual attention operator based on RL
and controlled the Pac-Man to collect all pac-dots
and avoid getting eaten by ghosts. Furthermore,
when the number of targets to be collected in the en-
vironment increases, the difficulty of the search also
increases (Niroui et al., 2017; Wu JF et al., 2021).

2.2 Optimization-based collision avoidance

As one of the core contents of mobile robot re-
search, the anti-collision algorithm aims to effectively
avoid obstacles and carry out tasks in the process
of movement (Jaderberg et al., 2019; Li HR et al.,
2020). Specifically, the robot faces challenges and
risks. It requires overcoming the environment’s un-
known factors and efficiently reaching its given goals
while avoiding potential conflicts with other robots
or dynamic obstacles. To avoid conflicts with static
and dynamic obstacles, Pei et al. (2022) presented
the notion of safe transition probability to model the
evolution of the hazard process. Lei et al. (2018) used
lidar to detect the environment dot matrix infor-
mation and achieved local path planning with dou-
ble deep Q network (DDQN). Wang et al. (2020)
introduced a local RL-based planner, which gener-
ates actions by exploiting surrounding environmen-
tal information.

Furthermore, when RL is used to prevent colli-
sions, the effectiveness and efficiency of motion plan-
ning heavily rely on the design of the sample selec-
tion policy. Exploration strategy with the rasterized
sampling is learned, and the action space is com-
posed of these sampling points (Li HR et al., 2020).
A random minibatch of experience tuples from replay
memory is sampled based on an extended deep de-
terministic policy gradient (DDPG) algorithm (Yu
et al., 2021). The Dyna-Q learning algorithm im-
proves the policy through samples of actual experi-
ence (Zhang et al., 2021). However, the relationships
between the robot and obstacles need to be taken se-
riously in the process of sample selection (Fudenberg
and Tirole, 1991; Osborne and Rubinstein, 1994; Hu

and Wellman, 2003), which lacks better state–action
pairs.

3 Preliminaries

The algorithm proposed in this study is based
mainly on RL and the game theory. A brief overview
of relevant knowledge is provided in this section.

3.1 Markov decision process (MDP)

The process of motion planning is regarded as a
problem of a series of sequential decisions, and the
MDP is a classic formalization of sequential decision-
making (Sutton and Barto, 2018). MDP offers a
straightforward approach to learning and achieving
a goal through interaction. In this context, the robot
serves as the learner and decision-maker, referred to
as the agent. The environment encompasses every-
thing outside the robot with which it interacts. The
environment gives rise to rewards. The robot aims to
maximize the cumulative rewards over time through
its decisions of actions.

In MDP, the actions of a robot influence not
only immediate rewards but also subsequent states
and future rewards. In other words, MDP involves
delayed rewards and the need to trade immediate
and delayed rewards. As a mathematically ideal-
ized form of optimization problems by combining the
Markov decision theory with dynamic programming,
MDP is widely used in many types of tasks, including
automated control, economics, robotics, and manu-
facturing (Puterman, 1990; Shi et al., 2018). MDP
is regarded as a discrete-time stochastic control pro-
cess. The robot and environment interact at each
of a sequence of discrete-time steps, t = 0, 1, 2, ....
At each discrete-time step t, the robot receives the
current state of the environment St and, based on
this, the robot selects a possible action At, which
follows the next state St+1. Subsequently, the robot
interacts with the environment and gets a reward Rt.

In the task of robot search and rescue in a dy-
namic environment, the sets of states, actions, and
rewards consist of a finite number of elements. In
this situation, the random variables Rt and St have
discrete probability distributions dependent only on
the preceding state and action. For particular val-
ues of these random variables, s′ and r, there is a
probability of those values occurring at time t with
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particular values of the preceding state and action:

p(s′, r|s, a)
.
=Pr {St = s′, Rt = r|St−1 = s, At−1 = a} . (1)

The goal of the robot is to learn a policy π to plan
an anti-collision path.

The additional concept is discounting. Accord-
ing to this approach of discounting, the robot at-
tempts to select actions in order that the sum of the
discounted rewards, in the long run, is maximized.
The robot chooses At to maximize the expected dis-
counted return Gt, and Gt is defined by the following
expression:

Gt
.
=Rt+1 + γRt+2 + γ2Rt+3 + ...

=

∞∑

k=0

γkRt+k+1,
(2)

where γ ( 0 ≤ γ ≤ 1 ) is a parameter that expresses
the discount rate; γ determines the present value of
future rewards. A policy is a mapping from states to
the probabilities of selecting each possible action.

The value function Qπ (St, At) of taking action
At in state St under policy π is defined as follows:

Qπ (St, At) = Eπ

[ ∞∑

k=0

γkRt+k+1|St, At

]
, (3)

where Eπ [·] denotes the expected value of a random
variable with policy π, and t is any time step. Func-
tion Qπ is regarded as the action–value function for
policy π.

3.2 Dyna architecture

The Dyna architecture integrates learning and
planning. The general Dyna architecture is shown
in Fig. 2. Real experience passes back and forth
between the environment and the policy. Mean-
while, real experience affects policy and value func-
tions. As a typical algorithm with the Dyna ar-
chitecture, Dyna-Q includes all processes (planning,
acting, model learning, and direct RL based on Q-
learning), which is effective in solving the motion
planning problem (Hwang et al., 2015; Zhang et al.,
2021).

3.3 Nash equilibrium

Game theory is one of the most fundamental
ways to describe the relationships in mobile robot

Real 
experience Policy/value

functions

Environment

Model Simulated 
experienceModel

learning
Search 
control

Planning
update

Direct RL update Direct RL update 

Fig. 2 The general Dyna architecture: real experience
passes back and forth between the environment and
the policy (RL: reinforcement learning)

systems (Lu YL and Yan, 2020). Among the con-
cepts in game theory, a mixed strategy is a proba-
bility distribution over the player’s pure strategies
(Roughgarden, 2010).

It is a general notion of a steady state to allow
the player’s choices to vary or deviate on each occa-
sion while playing the game. This notion means that
players might choose probability distributions over
a set of actions available to them. Such a steady
state is called stochastic (involving probability) and
modeled by an MNE. An MNE is a mixed-strategy
action profile, in which a single player cannot obtain
a higher expected payoff according to the player’s
preference over all such lotteries. In other words, ev-
ery player simultaneously chooses a mixed strategy
to maximize his/her expected rewards. Their re-
lationship is often represented in a “bimatrix” form.
One player chooses a row. The other player chooses a
column. The rewards for the row and column players
are represented by the numbers in the corresponding
matrix (Roughgarden, 2016).

A pair of probability distributions with the
property indicates an MNE. Every bimatrix game
has a Nash equilibrium. In an MNE, the players
randomize independently, and unilateral deviations
increase only a player’s expected cost. Unilateral de-
viation means that one player changes his/her own
strategy. Expected cost represents the weighted sum
of costs in a probability distribution of strategies.
Each player’s mixed strategy is optimal given the
equilibrium mixed strategies of the other players. In
other words, no player has the incentive to deviate
from his/her MNE strategy to another pure or mixed
strategy, conditional on the other players choosing
their equilibrium strategies.

A cost-minimization game has the following
main ingredients: a finite number of players h, a fi-
nite strategy set Gi for each player i, and a cost func-
tion Ci (gi, g−i) for each player i (where gi denotes
the strategy profile of player i and g−i denotes the
strategy profile of the other players). Distributions
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σ1, σ2, ..., σh over strategy sets G1, G2, ..., Gh of a
cost-minimization game constitute an MNE if for
every player i ∈ {1, 2, ..., h} and every unilateral de-
viation g′i ∈ Gi, there is

Eg∼σ

[
Ci

(
g∗i , g

∗
−i

)] ≤ Eg∼σ

[
Ci

(
g′i, g

∗
−i

)]
, (4)

where σ = σ1 × σ2 × · · · × σh denotes the product
distribution.

4 Problem definition

We define the model of the robot and the un-
known dynamic environment in this section. Ac-
cording to the model, the motion planning problem
is presented.

4.1 Model of the robot

The robot performs tasks in a discrete two-
dimensional (2D) grid space, where each grid rep-
resents a cell. The robot selects actions and moves
to adjacent grids, as shown in Fig. 3. Black grids
represent static obstacles or walls. Targets that need
to be collected are indicated by green hollow circles.
The robot itself is represented by a solid red dot,
and the blue dot represents the patrolman. The
possible actions are selected within the collection
A = {N, S,E,W,O}, representing the four directions
or the person staying still. The robot takes an action
and moves to the adjacent position, except when the
movement is blocked by an obstacle or the edge of
the map. The robot obtains information about the
environment within a sensing range dmax not blocked
by obstacles.

4.2 Search-and-rescue tasks in an unknown
dynamic environment

Each cell on the map is occupied by obstacles
or free space. The robot moves and collects the tar-
gets in the free space. The location of the robot is
(xrobot, yrobot). The robot performs tasks without
any prior information. The environment is dynamic
with a patrolman that can move and patrol. The pa-
trolman can be represented as a dynamic obstacle.
It patrols the targets in turn, with a certain possi-
bility to track the robot when the robot is within its
observation range. The patrol path of the patrolman
is trained according to RL, and the patrolman ad-
justs the path based on its observation information

a

b

c

I

E
Robot’s initial location 

Patrolman 

Targets

Static walls

Exit

Robot

Fig. 3 A search-and-rescue task in a grid space. Ref-
erences to color refer to the online version of this
figure

to maximize its rewards. The patrolman can judge
the current situation and make the most favorable
behavior decision to continue patrolling or tracking
the robot. Such behavior choice brings uncertainty
to the robot.

Considering real problems (Jaderberg et al.,
2019; Li HR et al., 2020) that arise in search-and-
rescue scenarios, when the rescuer enters the maze
to rescue the hostages, the robot needs to avoid pur-
suing the patrolman, according to observation infor-
mation. In Fig. 3, the robot starts from the initial
location to collect targets a, b, and c, and departs
from the environment at the exit. Meanwhile, the
patrolman starts at the exit and patrols the targets
one by one, over and over again.

5 Methodology

In this section, we present MNDQ, a new al-
gorithm for motion planning in an unknown dy-
namic environment using the game theory. The
general framework of MNDQ is shown in Fig. 4.
First, search-and-rescue tasks in dynamic environ-
ments are simplified through a multi-task hierarchi-
cal structure. In the process of simplification, a risk-
monitoring mechanism is proposed to more clearly
express the impact of patrols. Then, the basic inter-
action between the agent and the environment gen-
erates the trajectory of real experience. The arrow of
direct RL update in the figure represents direct RL
based on real experience, which improves the value
function and strategy. The model learning section
is a model-based process, and the model is learned
from real experience and gives rise to simulated expe-
rience. Search control is used to refer to the process
of selecting starting states and actions for the simu-
lated experience generated by the model. In search
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Fig. 4 The general framework of the mixed-strategy Nash equilibrium based Dyna-Q (MNDQ) algorithm. The
framework integrates the Dyna architecture with three key technologies: multi-objective layered structure,
risk-monitoring mechanism, and mixed-strategy Nash equilibrium (MNE) policy (RL: reinforcement learning)

control, if the patrolman is within the observation
range ro of our robot, actions are selected accord-
ing to the probability distribution given by the MNE
policy, as shown in Fig. 5. If not, ε-greedy action is
chosen (Sutton and Barto, 1999). The real experi-
ence generated by the environment and the simula-
tion experience observed from a model are used to
update the policy/value functions. Actions are se-
lected based on the policy function. Acting causes
transitions from state to state.

Specifically, the real experience is composed of
a group of subtasks (collecting targets, avoiding the
patrolman, and exiting). The subtask of avoiding the
patrolman is presented by the risk-monitoring mech-
anism. The simulated experience is generated by the
model with the MNE policy. Three key technologies
are presented in the following subsections. To sim-
plify notation, we write {St, At, Rt, St+1} simply as
{S,A,R, S′}.

5.1 Multi-objective layered structure

When multiple objectives need to be collected in
a dynamic environment, the execution results would
be poor. To solve this problem, we design a multi-
objective layered structure to simplify these multi-
stage tasks. The task model is layered to improve
learning accuracy and efficiency. The overall task is
decomposed into a group of discrete subtasks asso-
ciated with each other through the multi-objective
layered structure.

The objective is to maximize the total rewards
obtained in the long run. Ri denotes the reward re-
ceived after the ith selection of the action, and Qn

denotes the estimate of the action’s value after it has

r11, -r11

r21, -r21

r12, -r12

r22, -r22

Action 1′ Action 2′

Action 1

Action 2

r11, −r11 r12, −r12

r21, −r21 r22, −r22

[p1, p2]←argmax(∑∑piqjrij)
i j

p1→Action 1
p2→Action 2

Fig. 5 Mixed-strategy Nash equilibrium policy

been selected n − 1 times. There are multiple tar-
gets to be collected. When the targets are collected,
or the exit is reached, the robot reaps the reward.
The action–value function Q directly approximates
Q∗, the optimal action–value function, independent
of the policy followed. In the proposed structure,
the whole original learning task is decomposed into
smaller learning subtasks: target collection, exit, and
avoidance of dynamic risks. The number of smaller
learning subtasks is defined as k. The action–value
function of the ith learning subtask Qi is defined by
the following expression:

Qi(S,A)←
Qi(S,A) + α

[
Ri + γmax

a
Qi(S

′, a)−Qi(S,A)
]
,

(5)

where α denotes the step-size parameter and 1 ≤ i ≤
k. The order and orchestration of tasks depend on
the value of Qi in the current state S. After the
learning subtask i is learned, the state at the time S

is regarded as the terminal state of learning subtask
i. The layer of the ith learning subtask is defined as li.
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The order of learning tasks is determined according
to

li+1(S) = argmax
j

Qj(S), (6)

where j = K \ {{l1} ∪ {l2} ∪ · · · ∪ {li}} denotes all
the learning tasks excluding the layers that have been
learned (l1, l2, ..., li) with K = {l1, l2, ..., lk}.

The decision mode of the task sequence is ex-
pressed as shown in Fig. 6. The action–value func-
tion corresponding to each layer of learning subtasks
under different states with the multi-objective lay-
ered structure is shown in Fig. 7. Decomposition
allows each subtask to focus solely on the relevant
states and actions that are specific to that particu-
lar subtask. This approach effectively reduces the
computational complexity of the overall problem.

5.2 Risk-monitoring mechanism

A risk-monitoring mechanism is proposed to
provide a clearer representation of the impact of
a patrolman. This mechanism is based on assess-
ment of the relative positions of the dynamic risks.
The state of a dynamic risk is expressed using the
Manhattan distance and relative orientation. The
value of the Manhattan distance is the sum of the
lengths of the projections of the line segment be-
tween the points onto the coordinate axes, as shown
in Fig. 8a. If the current position of the patrolman is
(xpatrol, ypatrol) and the current position of the robot
is (xrobot, yrobot), the Manhattan distance dp−r be-
tween the robot and the patrolman is determined
according to

dp−r = |xpatrol − xrobot|+ |ypatrol − yrobot| . (7)

The relative orientation θp−r is used to de-
scribe the location of the patrolman from the robot

... ...li+1Qi Qi+1li+1

St

argmaxQj(St)
j

Fig. 6 Decision mode of the task sequence. The order
and orchestration of tasks depend on the value of Qi

in the current state S
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Fig. 8 Manhattan distance dp−r (a), relative orien-
tation θp−r (b), and the contour plot of max
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(Fig. 8b). θp−r is defined with the positions of the
robot and the obstacle:

θp−r =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, Δy = 0,Δx ≥ 0,

arctan(Δy/Δx), Δy > 0,Δx > 0,

π/2, Δy > 0,Δx = 0,

π+ arctan(Δy/Δx), Δy > 0,Δx < 0,

π, Δy = 0,Δx < 0,

π+ arctan(Δy/Δx), Δy < 0,Δx < 0,

3π/2, Δy < 0,Δx = 0,

2π+ arctan(Δy/Δx), Δy < 0,Δx > 0,

(8)

where Δx = xpatrol − xrobot and Δy = ypatrol −
yrobot. According to Eqs. (5), (7), and (8), we com-
bine the multi-objective layered structure and risk-
monitoring mechanism. Avoiding dynamic risks is
regarded as a smaller learning subtask in the task
level that runs through the learning process entirely.
The state in this task level is defined as follows:

Se = (θp−r, dp−r) , (9)

where the value of θp−r is based on Eq. (8) and the
value of dp−r is within the sensing range of the robot.
Combining Eqs. (5) and (10), the action–value func-
tion Qe of avoiding dynamic risks in the task level is
defined by the following expression:

Qe(Se, A)←
Qe(Se, A) + α

[
R+ γmax

a
Qe(S

′
e, a)−Qe(Se, A)

]
.

(10)

Risks are quantified and expressed intuitively
based on the above risk-monitoring mechanism. The
contour plot of max

A
Qe(Se) is shown in Fig. 8c, and

the position of the patrolman affects the action–value
function. The mechanism exploits observation infor-
mation within a local area to avoid potential colli-
sions and unnecessary detours.
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5.3 The MNE policy

Simulated transitions in Dyna-Q are started in
state–action pairs selected uniformly and randomly
from all previously experienced pairs. The random
selection policy may slow down the convergence rate.
Experience and samples should be focused on specific
state–action pairs. The game theory helps the robot
choose better specific state–action pairs. Continued
exploration may cause failure to avoid obstacles in
time, and excessive avoidance of obstacles may re-
duce exploration efficiency. The decision between
continuing to explore targets and avoiding the pa-
trolman is necessary.

For better decisions, combined with the idea
of operational research, the Nash equilibrium strat-
egy is used to select actions to obtain higher re-
turns. Pure strategic Nash equilibrium adopts
only the action with the highest return (Rosenthal,
1973), limiting exploration to other potential solu-
tions. In the case of different returns from search-
and-rescue tasks, pure strategy Nash equilibrium
does not necessarily exist. However, there must
be mixed-strategy Nash equilibrium (Greenwald and
Hall, 2003). Mixed strategies are probability dis-
tributions over the pure strategies, and the payoff
functions are the expectations of the players, thus
becoming multilinear forms in the probabilities with
which the players play their various pure strategies
(Nash, 1950).

To prevent the patrolman from predicting our
robot’s strategy, it is advisable not to reveal it defini-
tively. If the robot’s action is certain, the patrolman
may use this certainty to cause harm to the robot.
Therefore, it is considered optimal to adopt a ran-
domized approach. To prevent the only action from
being predicted by the patrolman and to encourage
the robot to explore potential solutions, we propose
an MNE policy to select an action in the form of
probability distribution.

In motion planning with an unknown dynamic
environment, the relationship between the patrol-
man and the robot is considered a zero-sum game,
meaning that the rewards of the patrolman and the
robot sum to zero. Such a game is specified by a
single matrix, with the two strategy sets correspond-
ing to row i and column j, as shown in Fig. 9. The
matrix describes the rewards in the motion planning
game. The entry rAij specifies the reward of the row

player (robot) in the outcome (i, j) and rBij repre-
sents the reward of the column player (patrolman)
in this outcome, satisfying rAij + rBij = 0. Row and
column players prefer larger and smaller values of
rAij , respectively.

The notations [p1, p2] and [q1, q2] are used to de-
note the mixed strategies (probability distributions)
over the rows and columns, respectively. With mixed
strategies, each player is randomized independently.
According to the definition of the problem mentioned
above, the enemy decides whether to continue pa-
trolling or tracking the robot according to the cur-
rent state. Meanwhile, the robot should choose to
avoid the enemy immediately or continue exploring
targets based on the observation information. The
robot aims to maximize its expected rewards based
on the MNE. Thus, the robot’s behavior is deter-
mined according to

[p1, p2]← argmax

⎛

⎝
∑

i

∑

j

piqjr
A
ij

⎞

⎠ . (11)

In Eq. (11),
∑

pi = 1 and
∑

qj = 1. The probability
of the robot’s behavior is expressed as follows:

{
p1r

A
11 + p2r

A
21 = p1r

A
12 + p2r

A
22,

p1 + p2 = 1,
(12)

which is converted into the following form:
[

rA11−rA12 rA21−rA22
1 1

] [
p1
p2

]
=

[
0

1

]
. (13)

Accordingly, the MNE policy is given in Algo-
rithm 1. When the patrolman is within the observa-
tion range of our robot, actions are selected accord-
ing to the probability distribution given by the MNE
policy, as shown in Fig. 5. Different actions give dif-
ferent rewards to the intelligent agent. The reward
matrix is obtained at each step based on the sur-
rounding environment. Then, we solve Eq. (13) and
obtain [p1, p2]. We select action 1 with a probability
of p1 and action 2 with a probability of p2, using a

B1 (patrol) B2 (track)

A1 (avoid)

A2 (explore)

r11, r11
A B r12, r12

A B

r21, r21
A B r22, r22

A B

Player B (patrolman)   Player A 
    (robot)

Fig. 9 Structure of the game played between players
A and B
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Algorithm 1 Mixed-strategy Nash equilibrium
(MNE) policy
Input: state of the robot S; state of the risk Se;

Qe (se, a); Q ={Q1 (s, a) , Q2 (s, a) , ..., Qk (s, a)};
m = argmaxQj(S), Qj ∈ Q; ∀se ∈ Se, ∀s ∈ S, ∀a ∈
A

Output: action A

1: Initialize: Probability of the robot avoiding obsta-
cles immediately p1; probability of the robot con-
tinuing to explore targets p2; probability of the pa-
trolman patrolling q1; probability of the patrolman
tracking q2; action A

2: rij ← S, Se,

[p1, p2]← argmax

(∑
i

∑
j

piqjrij

)

3: if rand(1)< p1, then
4: Avoid the patrolman immediately,

A ← ε-greedy(S,Qe)

5: else
6: Continue to explore targets,

A ← ε-greedy(S,Qm)

7: end if

random function. Furthermore, when the patrolman
is outside the observation range of the robot, ac-
tions are selected according to the greedy algorithm.
Algorithm 2 specifies the complete MNDQ in a pro-
cedural form. Model(S, Se, A) denotes the contents
of the planning model.

6 Simulations and analysis

We describe the learning and validation of
MNDQ for motion planning in an unknown dynamic
environment. The proposed algorithm is applied to
the ablation studies to prove its efficiency and supe-
riority. Furthermore, MNDQ is compared and eval-
uated with classic algorithms.

6.1 Simulation setting

The environment is a 2D grid world map, as
shown in Fig. 3. The speeds of the robot and the pa-
trolman are set to move one unit length per unit of
time. The parameter configurations adopted in the
simulations are listed in Table 1. The simulation en-
vironment is a computer with an Intel i7-8700 central
processing unit (CPU) and 32 GB memory. All the
algorithms are implemented with Python 3.6. The
simulations are designed based on the OpenAI Gym
Python library (Brockman et al., 2016). We com-

Algorithm 2 Mixed-strategy Nash equilibrium
based Dyna-Q (MNDQ)
Input: state of the robot S; state of the risk Se; number

of planning steps np; number of smaller learning
subtasks k; radius of observation range ro

Output: the learned state–action value function
1: Initialize: Q = {Q1 (s, a) , Q2 (s, a) , ..., Qk (s, a)};

Qe (se, a)

2: K = 0

3: S ← current state, Se ← current risk
4: while K < k do
5: m = argmax

j
Qj(S), Qj ∈ Q

6: K = K + 1, remove Qm from Q

7: A ← ε-greedy(S,Qm); take action A; observe re-
sultant reward R, state S′, and risk S′

e

8: for each i ∈ {1, 2, . . . , k} do
9: Qi (S,A)← Qi (S,A)

+α
[
R + γmax

a
Qi (S

′, a)−Qi (S,A)
]

10: end for
11: Qe (Se, A)← Qe (Se, A)

+α
[
R + γmax

a
Qe (S

′
e, a)−Qe (Se, A)

]
12: Model(S, Se, A)← R,S′, S′

e

13: for N=1:np do
14: S ← random previously observed state
15: if the enemy is within the observation range

then
16: A← MNE policy in S, Se

17: else
18: A ← ε-greedy(S,Qm)

19: end if
20: R,S′, S′

e ← Model(S, Se, A)

21: for each i ∈ {1, 2, . . . , k} do
22: Qi (S,A)← Qi (S,A)

+α
[
R + γmax

a
Qi (S

′, a)−Qi (S,A)
]

23: end for
24: Qe(Se, A)← Qe(Se, A)

+α
[
R + γmax

a
Qe(S

′
e, a)−Qe(Se, A)

]
25: end for
26: end while

pare our method with classic Q-learning algorithm
(Mirchevska et al., 2021), Dyna-Q algorithm (Liu SJ
and Tong, 2021), and DDPG (Dong and Zou, 2020),
which are typical methods to perform search-and-
rescue tasks.

If the robot crashes into the obstacles, a reward
of −10 is obtained. A reward of +1 is obtained if
the robot reaches the goal or collects the targets.
When the robot is trained, the patrolman takes the
behavior with the highest rewards for every episode.
At each time step, the environment sends a reward
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Table 1 Parameter configurations adopted in the
simulations

Parameter Value

Discount rate γ 0.95
Exploring rate ε 0.1

Number of planning steps np 5
Radius of observation range ro 5

Learning rate α 0.1
Episode number Ne 300

to the robot. The robot’s sole objective is to maxi-
mize the total rewards it receives over the long run.
Furthermore, average learning curves indicate the
training efficiency. To compare the efficacy, we pro-
cess the curves and show rewards and the number of
steps taken by the robot to accomplish the task in
each episode. All the simulations are obtained by an
average of 10 repeat runs. The standard deviation is
indicated by the shadow regions.

6.2 Ablation studies

Ablation studies are designed to prove the ef-
fectiveness of the key technologies proposed in this
study. MNDQ is compared with MNDQ without
MNE policy (Exp. 1), MNDQ without MNE policy
or risk-monitoring mechanism (Exp. 2), and MNDQ
without MNE policy, risk-monitoring mechanism, or
multi-objective layered structure (Exp. 3). The sim-
ulations are performed in an unknown environment
map (map size: 20×20) with obstacles and a pa-
trolman, as shown in Fig. 1. The ablation study
curves of rewards and the number of steps taken by
the robot to accomplish the task in each episode are
presented. Fig. 10 shows the learning curves using
the four algorithms and reveals the differences in the
performances of the algorithms. According to the
learning curves of rewards (Fig. 10a), the MNDQ al-
gorithm increases the average rewards to a positive
number in the 100th episode. However, it is difficult
for other algorithms (Exp. 1, 2, and 3) to achieve
positive rewards. In Fig. 10b, the average numbers
of steps taken by the robot to accomplish the task
are shown.

The results illustrate that the MNDQ algorithm
improves the learning performance. The multi-
objective layered structure simplifies the condition
of multiple objectives and effectively prevents the
path from falling into local optimum. The MNE pol-
icy helps the robot decide between obstacle avoid-
ance and exploration to ensure that the task is ac-

complished robustly and efficiently. The complete
trajectory is shown in Fig. 11. Starting from the
starting point, the robot collects all targets while
avoiding obstacles and avoiding tracking by the pa-
trolman. Fig. 12 shows the trajectories after 300
training episodes using the proposed algorithm. Sev-
eral key steps during the whole navigation process
are selected. The large red circle indicates the ob-
servation range of the robot in its current state. The
large blue circle indicates the observation range of
the patrolman. The results show that the three key
technologies contained in MNDQ are favorable to
raising the searching ability and learning efficiency.
According to the simulation results, MNDQ makes
the robot effectively collect targets while avoiding
collision, with a higher learning rate.
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Fig. 10 Average learning curves of the ablation study:
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Fig. 11 The complete trajectory in an unknown en-
vironment map with obstacles and a patrolman
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(a) (b)

(c) (d)
Robot’s initial location Targets Exit Patrolman Static walls Robot

Fig. 12 Planned trajectory with static obstacles: (a–
c) current positions of the robot (solid red dot) and
the patrolman (solid blue dot) when the robot collects
the targets; (d) the robot reaching the exit. Refer-
ences to color refer to the online version of this figure

6.3 Comparison in unknown dynamic envi-
ronments

1. Scene 1: environment without static obstacles
The additional static obstacles are removed here

to give prominence to the interaction between the
robot and the patrolman. The robot needs to col-
lect the targets in parallel with obstacle avoidance
according to Section 4.

We compare the performances of different meth-
ods using various maps (size: 20×20, 10×10). The
performance of MNDQ is significantly enhanced, re-
garding the learning curves shown in Fig. 13. It can
be found that the size of the map has an impact on
the completion of the task. As shown in Figs. 13a
and 13c, the learning curves of the rewards taken
by the robot to accomplish the task in each episode
are presented. The MNDQ algorithm increases the
average rewards to a positive number in the 20th

episode. However, other algorithms (Q-learning with
MNE policy, Dyna-Q, Q-learning, and DDPG) tend
to stabilize after 100 episodes. Figs. 13b and 13d
present the learning curves of the number of steps.
Our method reaches convergence in the 20th episode.
This means that we complete the search-and-rescue
task with fewer steps. Other algorithms fail to
achieve rapid convergence.

The simulation results show that the improved
Dyna-Q algorithm exhibits global searching ability,
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Fig. 13 Average learning curves in the unknown dy-
namic environments without static obstacles: (a) re-
wards under the map size 20×20; (b) number of steps
under the map size 20×20; (c) rewards under the map
size 10× 10; (d) number of steps under the map size
10×10. References to color refer to the online version
of this figure

excellent convergence properties, and superior learn-
ing efficiency in an unknown dynamic environment.
The curves of MNDQ tend toward stability after
about 100 episodes, which shows the better robust-
ness of the model. The other methods are volatile
and fail to collect all the targets or avoid obsta-
cles. Fig. 14 shows the planned trajectory after 300
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training episodes using MNDQ in an unknown envi-
ronment (size: 20×20) with a patrolman.

2. Scene 2: environment with static obstacles
The simulation is performed in an unknown en-

vironment map with static obstacles and a patrol-
man. The map is the same as shown in Fig. 3. In
addition, we compare the performances with differ-
ent maps (sizes: 20×20, 10×10). The planned tra-
jectory with MNDQ is shown by the solid red dot in
Fig. 12 (size: 20×20). The learning curves of differ-
ent maps (sizes: 20×20, 10×10) are shown in Fig. 15.
Static obstacles inside the environment make it more
difficult to achieve convergence with classic methods.
The learning curves of rewards of different algorithms
are shown in Figs. 15a and 15c. The learning curves
of the number of steps are shown in Figs. 15b and
15d. Different from scene 1, it is more difficult to
complete the task for other algorithms because of
the addition of static obstacles. Especially in the
map with a size of 20×20, our method reaches con-
vergence in the 100th episode. However, other algo-
rithms are almost unable to converge, meaning that
the robot cannot complete tasks safely.

The average numbers of collisions after training
are shown in Table 2. In these cases, the number of
collisions in our method is always zero. The results
prove the wide applicability of the proposed algo-
rithm for different-sized maps. The MNDQ method
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Fig. 14 Planned trajectory without static obstacles:
(a–c) current positions of the robot (solid red dot)
and the patrolman (solid blue dot) when the robot
collects targets; (d) the robot reaching the exit

makes the robot fulfill search-and-rescue tasks with-
out collisions. However, other algorithms may not
perform as well as expected, leading to collisions. As
the size of the map increases, the number of collisions
with other algorithms increases.

To validate the performance, we take a repre-
sentative environment with static obstacles as an
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Fig. 15 Average learning curves in the unknown dy-
namic environments with static obstacles: (a) rewards
under the map size 20× 20; (b) number of steps un-
der the map size 20× 20; (c) rewards under the map
size 10× 10; (d) number of steps under the map size
10×10. References to color refer to the online version
of this figure
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example, with a map size of 20×20. The trajec-
tories planned by different methods are shown in
Fig. 16. Our method enables the robot to complete
the tasks and reach the endpoint without collisions.
Other methods cannot avoid collisions in most cases.
When within the observation range of the patrol-
man, the robot with other methods is pursued, ren-
dering the task partially or completely incomplete.
In the simulations, MNDQ achieves the best perfor-
mance. The robot successfully collects all targets,
avoids the patrolman, and finally reaches the exit
with our method.

7 Conclusions

In this paper, we investigated the robot search-
and-rescue problem in unknown dynamic environ-
ments and proposed an MNDQ algorithm. The al-
gorithm adopted a multi-objective layered structure

to decompose the task into smaller learning sub-
tasks. We proposed a risk-monitoring mechanism
to help the robot generate a collision-free static tra-
jectory. These mechanisms were designed to express
and simplify the tasks. Furthermore, we combined
the knowledge of the game theory and designed the
MNE policy to choose better specific state–action
pairs and enhance the sample efficiency. The policy
enabled the agent to make decisions in the form of
probability to maximize the expected rewards and
improved the performance of Dyna-Q. The simula-
tion results proved that MNDQ is feasible and ef-
fective for motion planning in an unknown dynamic
environment.

In future research, we plan to run the proposed
algorithm with real-world experiments. Continuous
action and state spaces could be further considered to
generate smooth trajectories. Besides, search-and-
rescue tasks in large-scale environments are worth

Table 2 Average number of collisions

Scene
Average number of collisions

MNDQ Dyna-Q Q-learning Q-learning with MNE policy DDPG

Scene 1 (20×20) 0 1.4 5.5 1.6 >10

Scene 1 (10×10) 0 1.2 2.4 0 9.3
Scene 2 (20×20) 0 3.6 >10 8.2 >10

Scene 2 (10×10) 0 3.3 2.7 1.5 >10

MNDQ

Fail

 Q-learning with MNE policy Dyna-Q

Q-learning DDPG

Fail

Fail

Fail

Robot’s initial location

Targets

Exit

Patrolman

Static walls

Robot

Fig. 16 Planned trajectories obtained by different algorithms (arrows indicate the directions of the trajectories)
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studying further. Specifically, the focus of research
is how to break the curse of dimensionality. Studying
RL algorithms in large-scale dynamic environments
is a highly meaningful task, and we plan to investi-
gate it in our future work.
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