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Abstract: Multi-exit architecture allows early-stop inference to reduce computational cost, which can be used

in resource-constrained circumstances. Recent works combine the multi-exit architecture with self-distillation to

simultaneously achieve high efficiency and decent performance at different network depths. However, existing

methods mainly transfer knowledge from deep exits or a single ensemble to guide all exits, without considering that

inappropriate learning gaps between students and teachers may degrade the model performance, especially in shallow

exits. To address this issue, we propose Multi-exit self-distillation with Appropriate TEachers (MATE) to provide

diverse and appropriate teacher knowledge for each exit. In MATE, multiple ensemble teachers are obtained from

all exits with different trainable weights. Each exit subsequently receives knowledge from all teachers, while focusing

mainly on its primary teacher to keep an appropriate gap for efficient knowledge transfer. In this way, MATE

achieves diversity in knowledge distillation while ensuring learning efficiency. Experimental results on CIFAR-100,

TinyImageNet, and three fine-grained datasets demonstrate that MATE consistently outperforms state-of-the-art

multi-exit self-distillation methods with various network architectures.
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1 Introduction

In recent years, the number of mobile and edge

devices has been increasing rapidly, and the need

to deploy small and compact deep neural networks

(DNNs) on these devices is becoming more and more

urgent due to considerations such as data privacy

and computational resources (Schwartz et al., 2020).

Thanks to the development of multi-exit architec-

tures (Teerapittayanon et al., 2016; Huang et al.,

2018), devices can now store the whole model but

use only part of it during inference based on its oper-

ational status and available resources. This provides

an opportunity to achieve a good trade-off between

‡ Corresponding author
* Project supported by the National Natural Science Foundation

of China (No. U1866602) and the Starry Night Science Fund

of Zhejiang University Shanghai Institute for Advanced Study,

China (No. SN-ZJU-SIAS-001)

ORCID: Wujie SUN, https://orcid.org/0000-0001-7739-3517;

Can WANG, https://orcid.org/0000-0002-5890-4307

c© Zhejiang University Press 2024

efficiency and accuracy, and inspires us to further

improve the inference accuracy of each exit given the

constrained efficiency. A feasible approach to this

goal is knowledge distillation (Hinton et al., 2015).

Traditionally, knowledge distillation (Ba and

Caruana, 2014; Hinton et al., 2015; Chen et al.,

2022) improves the training of a small student model

by transferring knowledge from a large pre-trained

teacher model. Because the teacher pre-training in-

volves substantial resources, online knowledge dis-

tillation (Lan et al., 2018; Zhang Y et al., 2018;

Anil et al., 2020; Chen et al., 2020) was proposed

as training a group of student models simultane-

ously to transfer group knowledge into each stu-

dent model. Online knowledge distillation essentially

leverages virtual teachers with superior learning ca-

pability formed by the student ensembles. To fur-

ther reduce training cost, self-distillation (Furlanello

et al., 2018; Xu and Liu, 2019; Zhang LF et al., 2019;

Ji et al., 2021) uses the same network for both the
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teacher and student models by distilling knowledge

from the network itself. Recently, multi-exit archi-

tecture has been employed in self-distillation by dis-

tilling knowledge from different exits to improve the

model capability (Phuong and Lampert, 2019; Zhang

LF et al., 2019; Lee and Lee, 2021). An additional

benefit of multi-exit self-distillation is that the infer-

ence accuracy of each exit can be improved without

incurring extra computational cost, as illustrated in

Fig. 1.
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Fig. 1 Multi-exit self-distillation enabling adaptive

inference with high accuracy without incurring extra

computational cost (w/o: without; w/: with)

However, existing multi-exit self-distillation

works (Phuong and Lampert, 2019; Sun et al., 2019;

Zhang LF et al., 2019; Lee and Lee, 2021) fail to

address two issues in training, which hinders fur-

ther performance improvements. First, existing

works (Phuong and Lampert, 2019; Zhang LF et al.,

2019) have not effectively used the knowledge of mul-

tiple exits. They attempt only to transfer knowledge

from deep exits into shallow ones, leaving deep exits

less efficiently trained. However, predictions from

shallow exits can serve as regularization on deep ex-

its to improve the model learning capability (Yuan

et al., 2020). Model learning can also benefit from

diversity of knowledge by learning from different ex-

its (Chen et al., 2020). Therefore, leveraging knowl-

edge from multiple exits is expected to effectively

improve model training. More importantly, all exist-

ing methods (Phuong and Lampert, 2019; Sun et al.,

2019; Zhang LF et al., 2019; Lee and Lee, 2021) ig-

nore the learning capacity variations among differ-

ent exits; that is, models of different sizes and com-

plexities exhibit different capabilities in capturing

knowledge patterns of different granularities. Exist-

ing studies (Mirzadeh et al., 2020; Shi et al., 2021)

have shown that an inappropriate learning gap, or

mismatch in learning capabilities between teachers

and students, will negatively impact the knowledge

transfer between them. By limiting the learning

gap between the teacher and student, these works

successfully improve student performance in tradi-

tional knowledge distillation. However, learning gap

is rarely considered in online knowledge distillation

and self-distillation.

When we focus on acquiring better ensemble

teacher in multi-exit self-distillation, the learning

gap between students and teachers can become large

(especially for shallow exits), and lead to perfor-

mance degradation. However, when we focus on

narrowing the learning gap, we may not be able

to acquire valuable teacher knowledge. To ad-

dress these issues, we propose a novel method called

Multi-exit self-distillation with Appropriate TEach-

ers (MATE). We provide students with an equal

number of teachers which are obtained by different

weighted combinations of exits’ logits. Each stu-

dent is required to learn mainly from its primary

teacher whose knowledge is generally more appropri-

ate for student learning. To prevent students from

becoming overly focused on their primary teacher

and failing to capture the rest valuable knowledge,

students are asked to acquire some knowledge from

other teachers as well. We use a neural network to

calculate the weights for composing the teachers, and

generate diverse and appropriate knowledge for each

student by using a novel loss function. Our contri-

butions are summarized as follows:

1. We propose a multi-exit self-distillation

method that boosts model performance using its in-

trinsic knowledge and achieves adaptive inference.

2. We stress the importance of providing diverse

and appropriate teacher knowledge for different ex-

its, which is ignored in previous works.

3. Experimental results on CIFAR-100,

TinyImageNet, and fine-grained datasets demon-

strate that our method consistently outperforms

other methods with various network architectures.

2 Related works

2.1 Online knowledge distillation

Traditional knowledge distillation uses a pre-

trained teacher model to help the training of a stu-

dent model (Ba and Caruana, 2014; Hinton et al.,

2015; Ahn et al., 2019; Chen et al., 2021, 2022;

Tian et al., 2022). However, pre-trained teacher
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models are not always available due to privacy and

resource constraints. Therefore, online knowledge

distillation manages to use multiple individual stu-

dent models with the same architecture for train-

ing (Zhang Y et al., 2018; Anil et al., 2020). Be-

cause such network-based methods increase com-

putational costs, branch-based methods share the

shallow model blocks to further reduce training

costs (Lan et al., 2018; Chen et al., 2020). Gener-

ally, a weighted ensemble of student logits is viewed

as the teacher, and each student learns from it to

get consistent knowledge (Lan et al., 2018); alterna-

tively, each student can choose to acquire different

knowledge from other students to better increase the

peer diversity (Zhang Y et al., 2018; Anil et al., 2020;

Chen et al., 2020). Although online knowledge dis-

tillation is free from the constraints of pre-trained

teachers, using such methods still requires enormous

computational resources.

2.2 Self-distillation

Self-distillation explores a model’s intrinsic

knowledge to improve performance (Yang et al.,

2019a, 2019b; Zhang LF et al., 2019; Yuan et al.,

2020). With the help of results in different train-

ing phases, old predictions can be used to guide new

ones (Furlanello et al., 2018; Deng X and Zhang,

2021). Data augmentation (Xu and Liu, 2019)

or the correlation between samples (Yun et al.,

2020; Ge et al., 2021) can be used to achieve self-

distillation. By combining the multi-exit architec-

ture (Teerapittayanon et al., 2016; Huang et al.,

2018) with self-distillation, model performance can

be boosted and adaptive inference can be achieved.

Be your own teacher (BYOT) (Zhang LF et al., 2019)

and distillation-based training (DBT) (Phuong and

Lampert, 2019) use knowledge from the deepest exit

to guide shallower exits. The above methods leave

the deep exit without efficient guidance. Therefore,

in deeply-supervised knowledge synergy (DKS) (Sun

et al., 2019), each exit needs to draw on knowledge

from other exits, whereas in exit-ensemble distilla-

tion (EED) (Lee and Lee, 2021), the average of exits’

logits acts as the teacher to guide all exits. How-

ever, all methods ignore the learning capacity varia-

tions (Mirzadeh et al., 2020) among exits, which may

result in some exits not being efficiently improved.

2.3 Learning gaps in knowledge distillation

In recent years, scholars have found that bet-

ter teachers do not always teach better students

(Mirzadeh et al., 2020). Therefore, attempts

have been made to control the learning gap be-

tween teacher and student models, but mostly in

traditional knowledge distillation. For example,

given ResNet50 and ResNet18 (He et al., 2016) as

the teacher and student respectively, some works

(Mirzadeh et al., 2020; Son et al., 2021) create

teacher assistants which are shallower than the

teacher but deeper than the student to narrow the

learning gap between each distillation pair. However,

such methods consume a large number of computa-

tional resources. Instead of using the knowledge from

a pre-trained teacher, a teacher’s knowledge from its

different training epochs can be used to guide the

student at different training stages (Jin et al., 2019),

which is easier to learn. By training teacher and stu-

dent simultaneously and limiting the gap between

them (Shi et al., 2021), model performance can also

be further improved. However, these works have

studied only the learning gap problem in traditional

knowledge distillation, ignoring the possibility of this

happening in online knowledge distillation and self-

distillation. As a result, these methods are not suit-

able for multi-exit self-distillation.

3 Methodology

Because our MATE is the integrated framework

of multi-exit architecture and self-distillation, we will

first briefly introduce multi-exit architecture and ex-

isting self-distillation methods in Section 3.1, and

then describe our method in Section 3.2.

3.1 Preliminary

3.1.1 Multi-exit architecture

As shown in Fig. 1, a multi-exit architecture at-

taches multiple exits at different depths to achieve

adaptive inference with different computational re-

sources. Because the last exit is already included in

the original network, only those early exits are newly

added. Following the previous work (Zhang LF et al.,

2019), each early exit is designed to include multiple

convolutional layers, batch normalization (BN) lay-

ers, and activation layers, so that the output feature
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of each block is resized to the same dimensions with

the final output feature of the original network. Af-

ter that, a classifier is used to generate the logits zi,

and the prediction pi is calculated as

pik = σ(zik) =
ez

i
k∑K

j=1 e
zi
j

, (1)

where i denotes the exit index, k denotes the class

index, K denotes the number of classes, and σ(·) is

the Softmax function.

For BranchyNet (Teerapittayanon et al., 2016),

the training target is achieved by minimizing the loss

function between pi and label y:

L =

M∑
i=1

LCE(p
i,y), (2)

where LCE denotes the cross-entropy loss, and

M is the number of exits and often equals 4

for popular convolutional neural networks (CNNs)

such as VGG (Simonyan and Zisserman, 2015),

ResNet (He et al., 2016), and DenseNet (Huang

et al., 2017). BranchyNet does not involve any dis-

tillation method, and can be viewed as the baseline

for multi-exit self-distillation methods.

3.1.2 Multi-exit self-distillation

Because knowledge distillation is a powerful

tool, attempts have been made to combine it and

multi-exit architecture to improve model perfor-

mance and achieve adaptive inference (Phuong and

Lampert, 2019; Sun et al., 2019; Zhang LF et al.,

2019; Lee and Lee, 2021). In this study, we consider

only logit distillation and summarize the loss func-

tion of existing multi-exit self-distillation methods

as

L =
M∑
i=1

LCE(p
i,y)

+

M∑
i=1

LKL

(
σ

(
zi

T

)
,σ

(
ẑi

T

)
†

)
,

(3)

where ẑi denotes the ith teacher logits (each method

uses different ẑi), and LKL is the Kullback–Leibler

(KL) divergence. The stop-gradient operation is rep-

resented by “†.” Logits z are divided by temperature

T for better distillation (Hinton et al., 2015). We set

T to 3 for all methods because it is a common set-

ting in knowledge distillation (Hinton et al., 2015;

Lan et al., 2018; Chen et al., 2020).

The main difference in existing multi-exit self-

distillation methods is the way that knowledge is

transferred among exits. We illustrate three major

styles of multi-exit knowledge transfer in Fig. 2: (1)

learning from the deepest exit; (2) learning from all

other exits; (3) learning from an ensemble of all exits.

(b) (c)(a)

Shallow logits

Deep logits

Fig. 2 Comparison of various knowledge transfer ap-

proaches: (a) BYOT and DBT; (b) DKS; (c) EED

(The solid lines indicate the knowledge transfer and

the dashed lines indicate the knowledge ensemble)

BYOT (Zhang LF et al., 2019) and DBT

(Phuong and Lampert, 2019) use knowledge from the

deepest exit to guide the training of the shallower ex-

its. However, the deepest exit in these methods tends

to be insufficiently trained. In practice, the deepest

exit is not necessarily the best exit. As the simple ex-

periment in Fig. 3 shows, the accuracy of a shallower

exit could be better than that of the deepest exit;

i.e., exit 4 exhibits the lowest performance among all

the exits in early training stages. Even in late train-

ing stages, exit 3 can outperform exit 4, as shown

later in Section 4.4.3, when training on the dataset

CUB-200-2011. Meanwhile, transferring knowledge

only from the deepest exit will leave the useful knowl-

edge from other exits unexploited, leading to an in-

ferior model performance. To leverage knowledge

from different exits, DKS (Sun et al., 2019) enables

mutual learning between different exits. EED (Lee

and Lee, 2021) forms an ensemble teacher from all

exits in hope that the ensemble will boast superior

performance. Although knowledge transferred from

different exits improves model training, the learning

capacity variations among exits are ignored in these

methods, hurting the accuracy improvement.

3.2 Multi-exit self-distillation with appropri-

ate teachers

To improve knowledge transfer among differ-

ent exits, MATE exploits knowledge from all exits

while respecting the learning gap between teachers

and students. The framework of MATE is shown in
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Fig. 3 Top-1 test accuracy curve during training

with CIFAR-100 and VGG16 (BranchyNet (Teerapit-

tayanon et al., 2016) is used to remove the impact of

distillation on the accuracy)

Fig. 4. The ith teacher acts as the primary teacher

for the ith exit, and also acts as one of the secondary

teachers for other exits. Here, the term “primary”

suggests that this teacher imparts knowledge more

fittingly than others, serving as the main source of

learning for its corresponding student. Instead of us-

ing the fixed weights as in existing methods, we use

a weight network to calculate the ensemble weights

as shown in Fig. 4c. In this learning framework,

we propose a novel loss function to achieve two-way

learning and narrow the distillation gap.

3.2.1 Weight network

The weight network takes the resized flattened

features F i ∈ R
C from all exits as the input, and out-

puts the ensemble weights for obtaining the teach-

ers. i and C are the exit index and number of

channels, respectively. Because the parameters of

the weight network are constantly updated, differ-

ent teachers can be generated using different ensem-

ble weights even if the inputs are constant, allow-

ing students to learn more diverse knowledge. One

commonly used technique to compute the ensemble

weights is to use a neural network called gate (Lan

et al., 2018), which includes one fully connected

(FC) layer, one BN layer, and one rectified linear

unit (ReLU) layer. However, only one single ensem-

ble teacher can be obtained using one gate. As we

have stressed, because exits show various learning

capacities, a single teacher does not have the capa-

bility to provide all students with appropriate knowl-

edge. Multiple gate networks can be used, but gate

mechanism usually costs more training time than

self-attention (Vaswani et al., 2017) in our experi-

ments. Therefore, we choose to use self-attention as

the weight network to generate multiple teachers.

Specifically, we use two networks called query

θQ and key θK, each consisting of a single FC layer,

to map features into another dimensional space. As-

suming that the ensemble weight matrix is repre-

sented asw ∈ R
M×M , the ensemble weight of the ith

exit at the jth teacher is calculated as

wji =
eθQ(F j)θT

K(F i)∑M

m=1 e
θQ(F j)θT

K
(Fm)

, (4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

w = Weight network(F ),

M∑
i=1

wji = 1,

ẑj =

M∑
i=1

wjiz
i.

(5)

Note that features F and logits z are detached

at this point to avoid affecting the overall net-

work during back-propagation. The loss to update

the weight network will be discussed in the next

subsection.

3.2.2 Loss function

To achieve our goal, we carefully design the loss

function. First, each exit should accept knowledge

from all teachers, while learning mainly from its pri-

mary teacher, which can be represented as

Lexit-i =LCE(p
i,y)

+
M∑
j=1

LKL

(
σ

(
zi

T

)
,σ

(
ẑj

T

)
†

)

+ αiLKL

(
σ

(
zi

T

)
,σ

(
ẑi

T

)
†

)
.

(6)

We call this student loss, and it is used to update

the overall network (excluding the weight network).

αi is used to adjust the extent to which the student

learns from its primary teacher. When αi = 0, each

student learns equally from M teachers. When αi

gets larger, the student tends to focus more on its

primary teacher.

In addition, the teacher should provide knowl-

edge that is more appropriate for its primary student.

To achieve this, the knowledge provided by the ith

teacher should contain more knowledge from the ith
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Fig. 4 Framework of MATE: (a) the overall framework, where two-way learning is required between students

and teachers; students gain knowledge from teachers, and teachers dynamically adjust ensemble weights based

on students’ output; (b) exit architecture, where each exit resizes the block’s output feature to match the

dimensions of the last block’s output feature, which is then inputted to the fully connected classifier to generate

logits; (c) weight network, where a weight network based on self-attention is used to obtain teacher logits. It

takes resized features as the input, and outputs the weights. Teacher logits are computed using weights and

logits from all exits. Cuboids indicate the features and circles indicate the logits

student and its adjacent exits. If so, teachers need to

learn from students’ exit logits to generate appropri-

ate knowledge. To achieve this, we use the following

loss function:

Lteacher-i =

M∑
j=1

LKL

(
σ

(
zj

T

)
†

,σ

(
ẑi

T

))

+ α′
iLKL

(
σ

(
zi

T

)
†

,σ

(
ẑi

T

))
.

(7)

We call this teacher loss, and it is used to update

the weight network. When α′
i = 0, each teacher

will not bias towards any student. When α′
i > 0,

the teacher’s ensemble is more similar to its primary

student, thus facilitating the student learning by re-

ducing the gap.

We can combine Eqs. (6) and (7) to form an

overall loss function:

L =

M∑
i=1

LCE(p
i,y)

+
M∑
i=1

M∑
j=1

L∗
KL

(
σ

(
zi

T

)
,σ

(
ẑj

T

))

+ α

M∑
i=1

L∗
KL

(
σ

(
zi

T

)
,σ

(
ẑi

T

))
,

(8)

where L∗
KL(A,B) represents the two-way learning of

A and B, which means that neither A nor B is fixed

during training. We use a single α to reduce the

workload of tuning the hyper-parameters. We find

that it achieves satisfactory results.

The parameter α plays a pivotal role in the

MATE framework. It effectively manages the equi-

librium between efficient learning (which is charac-

terized by an appropriate learning gap) and the di-

versity of available knowledge sources. When α is

too small, the gaps cannot be effectively narrowed.

When α is far too large, the ith teacher’s logits will

be overly similar to the ith exit, causing the model

performance drop because students can learn little

from the teachers.

4 Experiments

We evaluated multiple methods with five dif-

ferent types of CNNs: VGG (Simonyan and Zis-

serman, 2015), ResNet (He et al., 2016), ResNeXt

(Xie et al., 2017), WideResNet (WRN) (Zagoruyko

and Komodakis, 2017), and DenseNet (Huang et al.,

2017) on five image classification datasets, includ-

ing CIFAR-100 (Krizhevsky and Hinton, 2009),

TinyImageNet (Le and Yang, 2015), CUB-200-2011

(Wah et al., 2011), Stanford Dogs (Khosla et al.,

2011), and FGVC-Aircraft (Maji et al., 2013). We

also conducted distillation with MSDNet (Huang

et al., 2018) in budget mode, which is shown in Sec-

tion 4.7.6.

4.1 Datasets

1. CIFAR-100. CIFAR-100 consists of 32 × 32

RGB images of 100 classes. The training set con-

tains 50 000 images and the test set contains 10 000

images.
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2. TinyImageNet. TinyImageNet is an im-

age classification dataset extracted from ImageNet

(Deng J et al., 2009) with 200 classes. Each class

contains 500 training images, 50 validation images,

and 50 test images. We use the validation images to

test the model performance.

3. Fine-grained datasets. CUB-200-2011, Stan-

ford Dogs, and FGVC-Aircraft are fine-grained im-

age classification datasets, containing 11 788 images

of 200 bird species, 20 580 images of 120 dog breeds,

and 10 000 images of 100 aircraft model variants,

respectively.

4.2 Compared methods

We compare MATE with the following meth-

ods: BranchyNet (Teerapittayanon et al., 2016),

BYOT (Zhang LF et al., 2019), DKS (Sun et al.,

2019), and EED (Lee and Lee, 2021). BranchyNet

is used to demonstrate the effectiveness of distilla-

tion, and the latter three are state-of-the-art multi-

exit self-distillation methods. In addition, a baseline

method is compared, where the model is trained from

scratch without multi-exit architecture or knowledge

distillation. For MATE, if not specified, α is set to 3.

The floating point operations (FLOPs) for dif-

ferent models and exits are reported in Table 1.

Because the inference FLOPs are the same for

all multi-exit methods, we provide only the accu-

racy comparison. These experimental results with

mean±STD are based on three runs (here, STD is

short for standard deviation). We use bold texts

to denote the best results and underlined texts to

indicate the second-best results.

4.3 Implementation details

Following the standard training procedure and

data augmentation, we trained all networks using

stochastic gradient descent (SGD) with momentum

0.9 and weight decay 5e-4 on all datasets. The batch

size was set to 128 for all models trained on CIFAR-

100 and TinyImageNet. Because the input dimen-

sion of fine-grained data is higher, we set the batch

size to 32 when training on fine-grained datasets due

to memory restrictions. The training epoch was set

to 200 and 300 when training on fine-grained datasets

and other datasets, respectively. The initial learning

rate was 0.1 in all cases, and the learning rate was

divided by 10 at one-half and three-quarters of the

training epochs.

The input data size of CIFAR-100 and Tiny-

ImageNet was 32 × 32 and the input data size of

fine-grained datasets was 224 × 224.

When implementing ResNet, WideResNet, and

DenseNet, for 32 × 32 input, the first 7 × 7 convolu-

tional kernel of stride 2 and padding 3 was changed to

a 3× 3 convolutional kernel of stride 1 and padding 1,

and the first max pooling layer was removed, which is

commonly used in practice. The rest of the original

network’s architecture is consistent with the imple-

mentation in torchvision.

4.4 Results

4.4.1 CIFAR-100

We summarize the top-1 test accuracy of differ-

ent models and methods on CIFAR-100 in Table 2.

The results from all exits are reported when the last

exit achieves the optimal test accuracy.

It can be seen from Table 2 that MATE achieves

considerable improvements in all cases, especially

for the shallow exits. This indicates the necessity

of providing exits with appropriate knowledge, be-

cause shallow exits probably cannot absorb com-

plex knowledge well due to the performance gap be-

tween shallow students and teachers. As MATE can

enhance the performance of the shallow exits, the

highly performing low-level blocks are able to ex-

tract more discriminative features, further aiding in

the training of higher-level blocks.

As shown in Table 2, due to the lack of effective

guidance for the last exit, BYOT’s exit 4 failed to

achieve sub-optimal accuracy in all cases. Because

knowledge from other exits was used to guide current

exits, DKS achieved at least one sub-optimal accu-

racy at all exits. EED did not achieve a sub-optimal

accuracy at exit 1, possibly due to the complexity of

the ensemble knowledge, which results in the inabil-

ity of shallow exits to learn effectively. This indicates

that selecting a better teacher to guide all exits is not

enough, emphasizing the importance of selecting ap-

propriate teachers for each exit.

In some cases, such as when the model is WRN-

14-4, shallower exits can outperform deeper exits,

indicating that overly complex models tend to overfit

during training. In such cases, using the deepest exit

to guide shallower exits may not be as effective, and

MATE can mitigate this issue.
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Table 1 Comparison of floating point operations (FLOPs) on different models and exits

Input size Model
FLOPs

Exit 1 Exit 2 Exit 3 Exit 4

32×32

VGG16 99.19M 192.79M 286.39M 314.18M

ResNet18 163.19M 294.05M 425.02M 556.03M

ResNet50 374.76M 659.48M 1087.25M 1300.99M

ResNeXt50 364.14M 668.10M 1116.04M 1348.20M

224×224 ResNet18 614.68M 1015.44M 1416.52M 1817.76M

Table 2 Top-1 test accuracy comparison on CIFAR-100

Model Exit No.
Accuracy (%)

Baseline BranchyNet BYOT DKS EED MATE

VGG16

1 – 68.87±0.42 69.43±0.27 69.63±0.40 69.50±0.33 70.79±0.08

2 – 75.26±0.25 75.21±0.26 75.44±0.15 75.49±0.20 75.92±0.17

3 – 76.85±0.07 76.45±0.06 76.75±0.30 77.28±0.12 77.60±0.17

4 75.51±0.21 76.86±0.07 76.60±0.12 76.86±0.16 77.23±0.21 77.60±0.16

ResNet18

1 – 74.91±0.34 75.21±0.27 75.13±0.17 75.12±0.14 76.18±0.20

2 – 77.45±0.22 77.91±0.52 77.84±0.07 78.18±0.13 78.88±0.32

3 – 80.52±0.04 80.58±0.29 80.87±0.05 80.72±0.14 81.33±0.32

4 79.82±0.11 81.57±0.06 81.42±0.16 81.74±0.26 81.65±0.24 82.19±0.40

ResNeXt50

1 – 79.24±0.38 80.67±0.28 80.23±0.48 80.19±0.09 81.72±0.16

2 – 80.93±0.35 82.02±0.42 82.19±0.33 81.69±0.20 82.86±0.15

3 – 83.53±0.52 83.91±0.36 84.28±0.04 84.15±0.21 84.57±0.25

4 82.28±0.20 83.43±0.45 83.53±0.21 84.21±0.17 84.01±0.06 84.66±0.13

WRN-14-4

1 – 78.69±0.45 80.05±0.16 79.80±0.48 79.75±0.53 80.74±0.23

2 – 78.89±0.24 79.78±0.15 79.95±0.16 79.96±0.05 80.74±0.22

3 – 78.76±0.08 79.17±0.17 79.52±0.17 79.44±0.16 80.34±0.28

4 78.99±0.18 79.36±0.16 79.58±0.08 80.35±0.08 80.04±0.19 81.25±0.06

DenseNet121

1 – 73.64±0.81 75.13±0.67 74.85±0.18 74.63±0.15 75.85±0.39

2 – 78.38±0.69 79.45±0.30 79.13±0.41 79.03±0.47 79.91±0.29

3 – 82.27±0.23 82.79±0.45 82.29±0.28 82.83±0.17 82.92±0.12

4 82.24±0.24 83.00±0.16 83.07±0.20 83.23±0.47 83.46±0.32 83.59±0.22

WRN-50-2

1 – 78.96±1.03 80.69±0.26 79.66±0.53 79.85±0.42 81.16±0.55

2 – 80.66±0.41 82.12±0.33 81.60±0.57 81.58±0.39 82.13±0.80

3 – 83.26±0.26 84.06±0.13 83.99±0.20 84.22±0.43 84.16±0.63

4 82.08±0.09 83.77±0.16 84.15±0.28 84.25±0.23 84.49±0.35 84.52±0.33

Bold texts denote the best results, and underlined texts indicate the second-best results

4.4.2 TinyImageNet

As shown in Table 3, MATE still achieves the

optimal accuracy in all cases on this more challenging

dataset. Similar to Table 2, the baseline method con-

sistently performs worst in Table 3, and BranchyNet

performs worst among all multi-exit methods due to

the absence of knowledge distillation.

4.4.3 Fine-grained datasets

As shown in Fig. 5, MATE outperforms other

methods overall. Though BYOT outperforms

MATE at exit 3 on CUB-200-2011, the margin is

small and there are still large gaps between these

two methods at other exits. Because the baseline

method has only one exit and performs much worse

than other methods, we do not plot it in Fig. 5. The

accuracy of the baseline method’s final exit on CUB-

200-2011, Stanford Dogs, FGVC-Aircraft is 57.64%,

63.78%, and 73.68%, respectively. Note that using

the multi-exit architecture greatly improves the final

model performance compared to the baseline, indi-

cating its effectiveness.
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Table 3 Top-1 test accuracy comparison on TinyImageNet

Model Exit No.
Accuracy (%)

Baseline BranchyNet BYOT DKS EED MATE

VGG16

1 – 46.25±0.29 46.75±0.53 46.52±0.25 46.37±0.50 47.64±0.10

2 – 50.91±0.26 50.77±0.38 51.15±0.06 50.97±0.25 51.70±0.51

3 – 52.33±0.35 52.30±0.74 52.77±0.15 52.47±0.24 53.29±0.45

4 51.11±0.12 52.30±0.42 52.36±0.44 52.84±0.09 52.51±0.37 53.37±0.35

ResNet18

1 – 51.10±0.40 51.93±0.24 51.56±0.30 52.13±0.57 52.45±0.16

2 – 54.43±0.50 55.08±0.56 54.96±0.31 54.84±0.37 55.30±0.42

3 – 58.16±0.38 58.88±0.51 58.65±0.46 58.60±0.20 58.92±0.19

4 57.11±0.25 59.21±0.13 59.55±0.31 60.19±0.26 59.80±0.27 60.23±0.10

ResNeXt50

1 – 55.66±0.71 57.28±0.33 57.30±0.19 56.93±0.44 58.47±0.27

2 – 58.06±0.41 59.17±0.08 58.86±0.09 58.39±0.32 60.38±0.16

3 – 61.33±0.40 62.47±0.33 61.99±0.38 61.63±0.12 62.66±0.38

4 60.13±0.27 61.56±0.41 62.12±0.17 62.32±0.19 62.07±0.08 63.11±0.10

WRN-14-4

1 – 55.74±0.26 56.08±0.35 55.66±0.23 56.15±0.29 57.62±0.62

2 – 55.28±0.14 55.70±0.15 55.74±0.11 56.05±0.51 57.50±0.34

3 – 54.73±0.39 54.87±0.05 55.09±0.28 55.48±0.32 56.82±0.57

4 54.14±0.27 55.39±0.22 55.07±0.21 55.93±0.12 56.16±0.39 57.67±0.19

DenseNet121

1 – 52.01±0.77 53.35±0.08 53.15±0.40 52.57±0.50 54.61±0.85

2 – 56.85±0.23 57.77±0.77 57.27±0.97 56.92±0.12 58.48±0.31

3 – 60.65±0.27 61.17±0.20 61.39±0.55 61.06±0.09 62.02±0.38

4 59.51±0.24 61.20±0.42 61.01±0.26 61.91±0.44 61.69±0.24 62.84±0.17

WRN-50-2

1 – 55.71±0.42 57.77±0.22 57.09±0.48 56.83±0.55 58.60±0.28

2 – 57.60±0.69 59.23±0.50 58.92±0.61 58.13±0.24 59.54±0.29

3 – 61.81±0.16 62.84±0.32 62.88±0.23 62.07±0.32 62.90±0.22

4 59.69±0.37 61.82±0.34 62.43±0.22 62.81±0.24 62.36±0.31 63.10±0.33

Bold texts denote the best results, and underlined texts indicate the second-best results
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Fig. 5 Top-1 test accuracy comparison on the fine-grained datasets with ResNet18: (a) CUB-200-2011;

(b) Stanford Dogs; (c) FGVC-Aircraft

4.5 Learning gaps

Though the optimal learning gaps are hard to

determine (Mirzadeh et al., 2020), some principles

should be satisfied: the knowledge provided by the

teachers should be superior to what the students had

already mastered. Furthermore, the learning gap

should be stable. In our work, we use the top-1 test

accuracy to measure the knowledge superiority, and

view the test accuracy difference between the teacher

and the student as the learning gap. Note that a

positive difference value means that the teacher’s

knowledge is superior to that of the student and

a smaller standard deviation means a more stable

learning gap. We calculated the mean and standard

deviation based on 300 epochs, and the results are

shown in Table 4. As we can see, BYOT fails to pro-

vide good knowledge in exit 3, which might explain
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why it has poor performance in Table 2. MATE

has the most stable learning gaps in all four ex-

its among compared methods to better improve the

performance. The trends in the learning gap across

training epochs are shown in Fig. 6.

4.6 Ensemble weights

To provide a better understanding of the ensem-

ble weights for each teacher in MATE, we show the

weights during training on CIFAR-100 with VGG16

in Fig. 7. Weights at training epochs 1, 11, 51, and

300 are reported. We also check the ensemble weights

when training a ResNet-like architecture, and find

that its changing trend is similar to that of the VGG

Table 4 Learning gap comparison on CIFAR-100 with

VGG16

Exit No.
Accuracy difference (%)

BYOT DKS EED MATE

1 5.91±2.47 6.83±2.13 7.49±1.98 5.67±1.57

2 0.50±1.19 1.78±1.00 2.18±0.85 1.40±0.60

3 −0.59±0.61 0.36±0.76 0.71±0.56 0.48±0.45

4 – 1.01±0.97 1.27±0.76 0.94±0.71

Bold texts denote the best results of standard deviation

architecture. It can be seen that each teacher tends

to collect knowledge from its nearby exits at all train-

ing epochs reported due to the self-attention mecha-

nism. This ensures that the knowledge that students

are required to learn aligns closely with what they

have already mastered, and providing such within-

capability knowledge will help learning. It can also

be observed that the poor-performance exit’s pri-

mary teacher is composed of more “self-knowledge”

(larger diagonal weights), indicating a more urgent

need to narrow the learning gap. Because the per-

formance of shallow exits is better than that of deep

exits at the early training stage, diagonal weights of

shallow exits are smaller than those of the deepest

exit at epoch 1 compared to other epochs.

4.7 Ablation study

4.7.1 Impact of α

We show the accuracy of exits 1 and 4 of VGG16

and ResNeXt50 when using different α on CIFAR-

100. As shown in Fig. 8, MATE achieves quite good

results when α = 3, and we adopt it as the default

setting in our experiments. Additionally, the final
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performance degrades whether α is too small or too

large, and the optimal α is different for different exits

and models. It can be seen that the optimal α of

VGG16 (30 for exit 1 and 10 for exit 4) is greater

compared to that of ResNeXt50 (3 for exits 1 and

4). This may be because the performance difference

between exits of VGG16 is larger compared to that

of ResNeXt50 (see the results in Table 2). Therefore,

the need for smaller learning gap in the distillation

is greater for VGG16, which is achieved by using a

larger α.

4.7.2 Impact of diverse α

As shown in Fig. 8, the optimal α varies among

different exits. Therefore, we modify Eq. (8) to

the following equation to see whether diverse α can

achieve better results:

L =

M∑
i=1

LCE(p
i,y)

+
M∑
i=1

M∑
j=1

L∗
KL

(
σ

(
zi

T

)
,σ

(
ẑj

T

))

+

M∑
i=1

αiL
∗
KL

(
σ

(
zi

T

)
,σ

(
ẑi

T

))
,

(9)

where each exit has its unique αi. We train MATE

by setting α1 = 30, α2 = 5, and α3 = α4 = 10

because they are the optimal values we obtained for

exits on CIFAR-100 with VGG16. Table 5 shows

that simply applying diverse α fails to boost the per-

formance, and the results are even worse than those

when α is consistently set to 3. This indicates that

model training is a complex process that requires

exit synergy. What is more, it is easier and more

time-saving to tune a single α than to provide the

most appropriate α for each exit.

4.7.3 Impact of diverse teachers

To prevent student from overly focusing on its

primary teacher, we ask each exit to learn from all

Table 5 Impact of diverse α on top-1 test accuracy

on CIFAR-100 with VGG16 using MATE

Exit No.
Accuracy (%)

Optimal α = 3 Diverse α

1 70.95±0.29 70.79±0.08 70.71±0.18

2 76.09±0.25 75.92±0.17 75.88±0.37

3 77.71±0.21 77.60±0.17 77.43±0.35

4 77.78±0.12 77.60±0.16 77.48±0.34

Bold texts denote the best results, and underlined texts indi-

cate the second-best results
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teachers with a variety of knowledge to improve the

model performance. To verify its usefulness, we let

students learn only from their primary teachers by

modifying Eq. (6). This will cause significant perfor-

mance degradation and the results in Table 6 confirm

the importance of providing diverse teachers.

4.7.4 Impact of distillation temperature

We further experimented on more distillation

temperatures to show the superiority of MATE. As

shown in Fig. 9, MATE still outperforms other algo-

rithms, even we do not tune other hyper-parameters

for temperature variations.

4.7.5 Impact of weight network

Results when using the same α but applying

different ensemble mechanisms can be quite differ-

ent. Due to the nature of the self-attention mech-

anism, for more similar features, it tends to output

larger weights. However, this is not the case when

using the gate mechanism. We compared these two

mechanisms on CIFAR-100 with VGG16, and the re-

sults are shown in Fig. 10. As can be seen, there is

no significant difference in the optimal accuracy be-

tween the gate and self-attention mechanisms. How-

ever, it is noteworthy that the value of α at which

self-attention reaches its optimal accuracy is usually

Table 6 Impact of diverse teachers (DTs) on top-1

test accuracy on CIFAR-100 with VGG16 using

MATE

Exit No.
Accuracy (%)

With DT Without DT

1 70.79±0.08 70.37±0.48

2 75.92±0.17 75.68±0.17

3 77.60±0.17 77.25±0.19

4 77.60±0.16 77.37±0.11

Bold texts denote the better results
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Fig. 9 Ablation study on temperature T with VGG16

on CIFAR-100

lower than that for the gate mechanism. This is be-

cause the corresponding teacher logits for each exit

tend to be closer to the logits of the current exit when

using self-attention and thus a smaller α is enough.

4.7.6 Budget mode

To better demonstrate the superiority of our

method, we conducted distillation in MSDNet

(Huang et al., 2018) with 5 exits and 15 layers. Fol-

lowing the settings in DBT (Phuong and Lampert,

2019), we report the top-5 test accuracy. In budget

mode with dynamic evaluation, comparison results

on CIFAR-100 are shown in Table 7. Under different

FLOPs, MATE achieves the best results.

Table 7 Top-5 test accuracy comparison in budget

mode

FLOPs
Accuracy (%)

MSDNet BYOT DKS EED MATE

∼6.9M 86.37 87.02 86.67 86.84 87.42

∼8.3M 88.07 88.31 88.38 88.28 88.86

∼10.5M 89.42 89.57 89.71 89.67 90.13

∼13.1M 90.41 90.78 90.53 90.75 91.07

∼16.1M 91.51 91.69 91.30 91.60 91.96

∼19.3M 92.14 92.36 92.09 92.49 92.66

Bold texts denote the best results, and underlined texts indi-

cate the second-best results

5 Limitations and future work

Although no extra inference time is introduced,

training with MATE is more time-consuming and

costs more memory space compared to other meth-

ods. Therefore, MATE may fail to run when applied

to a huge model with many exits due to memory

constraints. In addition, it may take significant com-

putational resources and time to search the optimal

α, which is even aggravated when diverse α is used.

It is a challenge to automatically determine the ap-

propriate α based on the performance of the model

during training. We consider it as our future work.

6 Conclusions

Using self-distillation in the training of multi-

exit architecture can improve the performance of

each exit, which is particularly useful for resource-

constrained circumstances. Existing methods use

mainly the knowledge from deep exits or a single
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ensemble to guide all exits, and ignore the fact that

shallow exit performance may not be significantly

improved due to the learning gap between the teacher

and the student. In this paper, we proposeMulti-exit

self-distillation with Appropriate TEachers (MATE)

to provide diverse and appropriate knowledge for

each exit. We highlight the necessity of control-

ling the learning gap between students and teachers.

Experimental results show that our method consis-

tently achieves better performance than state-of-the-

art methods with various network architectures on

multiple datasets.
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