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Abstract:    The flight dynamics model of air-breathing hypersonic vehicles (AHVs) is highly nonlinear and multivariable cou-
pling, and includes inertial uncertainties and external disturbances that require strong, robust, and high-accuracy controllers. In this 
paper, we propose a linear-quadratic regulator (LQR) design method based on stochastic robustness analysis for the longitudinal 
dynamics of AHVs. First, input/output feedback linearization is used to design LQRs. Second, subject to various system parameter 
uncertainties, system robustness is characterized by the probability of stability and desired performance. Then, the mapping rela-
tionship between system robustness and LQR parameters is established. Particularly, to maximize system robustness, a novel 
hybrid particle swarm optimization algorithm is proposed to search for the optimal LQR parameters. During the search iteration, a 
Chernoff bound algorithm is applied to determine the finite sample size of Monte Carlo evaluation with the given probability 
levels. Finally, simulation results show that the optimization algorithm can effectively find the optimal solution to the LQR  
parameters. 
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1  Introduction 
 

Air-breathing hypersonic vehicles (AHVs) have 
attracted a lot of attention for decades because of their 
prospects for high-speed, large payload transportation 
and excellent cost effectiveness to access the space 
routine. The flight control system plays an important 
role in making AHVs feasible and efficient (Fidan et 
al., 2003; Rodriguez et al., 2008). Although there 
have been numerous efforts on this issue, designing a 
flight control system for AHVs is still a challenge. 
Due to its high flight speed, the vehicle is sensitive to 

the changes in flight conditions, which results in dif-
ficulties in measuring and estimating the aerodynamic 
properties (Bolender and Doman, 2005). In addition, 
the requirements of flight stability and high-speed 
response, strong couplings, and various random un-
certainties make it more difficult (Williams et al., 
2006; Bolender et al., 2007). Much research has been 
conducted on the design of AHV controllers, and a 
comprehensive review of hypersonic flight dynamics 
and control approaches was given in Xu and Shi 
(2015). Linear control approaches were applied for 
AHV flight control, e.g., the linear-quadratic regula-
tor (LQR) method (Grove et al., 2005; Wang and 
Stengel, 2013) and gain-scheduling method (Arun 
Kishore et al., 2008; Ge et al., 2011). The linear  
controller was designed around the specified trim 
condition by linearizing the nonlinear longitudinal  
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dynamics. Use of the linearized model indicates that 
the linear control method cannot reflect the nonlinear 
characteristics of AHVs. In recent years, nonlinear 
techniques have been widely used in AHV control, 
such as feedback linearization (Dickeson et al., 2009; 
Preller and Smart, 2015), back-stepping technique 
(Xu et al., 2016), sliding-mode control (Xu et al., 
2004; Zong et al., 2013), and intelligent control 
technique (Xu et al., 2015a; 2015b; Xu and Zhang, 
2015). Considering the random parametric uncer-
tainties, strong inertial couplings, and unmodeled 
dynamics, the robust control technique is a feasible 
approach for AHV flight control design (Kuipers et 
al., 2008; Rehman et al., 2013; Pu et al., 2014). As a 
robust control technique, robust control based on 
stochastic robustness analysis (SRA) was first 
demonstrated by Stengel and Ryan (1989; 1991) for 
the analysis of a linear control system. In the past few 
years, a lot of investigation has been done to make 
SRA possible for control system design. In Marrison 
and Stengel (1997) and Wang and Stengel (2001; 
2002), SRA was employed to design the compensator 
for a benchmark problem to achieve a tradeoff be-
tween system stability and performance. Attempts 
have been made to apply robust control based on SRA 
to the control system design of hypersonic aircraft 
(Marrison and Stengel, 1998; Wang and Stengel, 2000) 
and general aircraft (Ray and Stengel, 1990). These 
studies have provided a practical systemic process for 
aircraft control design with linear/nonlinear synthesis 
and achieved good performance for the given control 
structures.  

However, the aforementioned studies on SRA 
focused mainly on robustness measurement and 
analysis, and gave little attention to stochastic evalu-
ation and optimization algorithms. The key point of 
stochastic evaluation is to make certain that the esti-
mate provided by the stochastic algorithm is within a 
prior specified accuracy ζ from the true value, and 
with a high confidence 1−µ. In other words, the al-
gorithm may fail to return an approximately correct 
estimate with a probability of at most µ (Piccoli et al., 
2009). Therefore, a suitable number of stochastic 
samples can not only correspond to the desired 
probabilistic levels, but also avoid involving a large 
number of unnecessary stochastic samples. Further-
more, the selection of the optimization algorithm is 
correlated strongly with the calculation efficiency.  

An efficient optimization algorithm can reduce the 
computation complexity and quickly find the optimal 
solution. 

Considering the two important factors men-
tioned previously (ζ and µ), we propose an improved 
LQR design method based on SRA for an AHV with 
assumed system parameter uncertainties and a large 
span of design parameter space. The proposed method 
employs SRA to characterize system robustness, and 
establishes a direct relationship between the design 
requirements and design parameters. Then, a novel 
hybrid particle swarm optimization (PSO) algorithm 
is used to maximize system robustness, which guar-
antees a successful tradeoff between system stability 
and system performance. The search ability and ro-
bustness of the proposed algorithm are verified by 
three nonlinear benchmark functions. During the 
search iteration, a Chernoff bound algorithm is ap-
plied to determine the finite sample size for Monte 
Carlo evaluation (MCE), which guarantees the esti-
mated accuracy and confidence of stochastic evalua-
tion. Finally, simulation results show the effective-
ness and robustness of the proposed method in the 
AHV flight control application. The notations of this 
study are listed in Table 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Variables and parameters of concern 
Parameter Description 

V (ft/s) Velocity 
γ (rad) Flight-path angle 
h (ft) Altitude 

α (rad) Angle of attack 
q (rad/s) Pitch rate 

ϕ Throttle setting 
m (slug) Mass 

Iy (slug·ft2) Inertial moment 
ρ (slug/ft3) Density of air 

s (ft2) Reference area 
c  (ft) Mean aerodynamic chord 
Re (ft) Radius of the Earth 
r (ft) Radial distance 

T (lbf) Thrust 
L (lbf) Lift 
D (lbf) Drag 

My (slug·ft) Pitching moment 
CT Thrust coefficient 
CL Lift coefficient 
CD Drag efficient 
Ma Mach number 
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2  Mathematical model of an AHV 
 

The longitudinal dynamics equations of an AHV 
were presented in Wang and Stengel (2000) and 
Parker et al. (2007). The equations of motion include 
an inverse-square-law gravitational model and cen-
tripetal acceleration for the nonrotating Earth. By 
normalizing the span of the vehicle to unit depth, the 
mathematical model of longitudinal dynamics is 
written in the stability axes as follows: 
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The engine dynamics are assumed to take a second- 
order form as (Xu et al., 2004) 
 

2 2
c2 .n n nφ ζω φ ω φ ω φ= − − +                 (11) 

 
In this study, relative functions are used to ap-

proximate the aerodynamic coefficients around the 
nominal cruising condition. The nominal flight of the 
vehicle is at a trim cruise condition, i.e., Ma=15, V= 
15 060 ft/s, γ=0°, h=110 000 ft, and q=0°/s. All of the 
parametric uncertainties are considered as an additive 
variance to the nominal values for control design. For 
illustration, the uncertain parameters are considered 

as follows:  
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1 10 1
(1 ).M M MC C Cα α α= + ∆                  (24) 

 
The nominal parameters for control design are 

m0=9375, I0=7×106, S0=3603, 0 80,c =  and ρ0= 
0.24325×10−4. Readers can find details for the un-
valued coefficients of the mathematical expressions 
above in Bolender and Doman (2005). The throttle 
setting ϕc and elevator deflection δe are the control 
inputs. The reference command of velocity and alti-
tude are denoted as Vd(t) and hd(t), respectively. 
 
 
3  Tracking controller design 

3.1  Input/output feedback linearization 

Input/output feedback linearization is an effec-
tive approach for nonlinear system control. The ob-
jective is to transform the nonlinear system into a 
linear form by full-state feedback when satisfying the 
relative degree condition. Then, the classical linear 
system theory can be used for controller design  
synthesis. 

Define T[ , , , , , , ] .V h qγ α φ φ=x   The longitudinal 
dynamics of the AHVs described in Eqs. (1)–(5) can 
be considered as a standard form of a general multi- 
input multi-output nonlinear system: 
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where ,n∈F 

m∈G  , and mR∈H  are sufficiently 
smooth functions. Each of the output channels is 
differentiated enough times to make the control inputs 
appear in the final expression. Assuming the system 
relative degree is well defined, the target of lineari-
zation is to obtain the resulting equations as 
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where the Lie derivatives are defined as 
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When the described method is applied to the 

longitudinal dynamics of the hypersonic flight vehicle, 
the output dynamics for velocity V and altitude h can 
be acquired by differentiating V three times and h four 
times, i.e., 
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(30)  
where 1 1( )/f=∂ ∂ω x x, 2 2 ( )/f=∂ ∂ω x x, 1 1( )/=∂ ∂Ω ω x x , 
and 2 2 ( )/=∂ ∂Ω ω x x. According to Eqs. (28) and (30), 
the output dynamics can be written as 
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The detailed expressions of ω1, ω2, Ω1, Ω2, F*, 
and G* are given in Appendix. The determinant of 
G*(x) is 
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and G*(x) can be nonsingular under the condition 
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Therefore, G*(x) is nonsingular unless flight path 
angle γ is vertical or 
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Eq. (31) can be rewritten in a decoupled-integrator 
form as 
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3.2  LQR design 

The objective of control system design is to track 
the desired command and eliminate input/output er-
rors. Using Eqs. (28) and (30), we define a nonlinear 
coordinate transformation ξ=T1[x, Vd(t)] and η=T2[x, 
hd(t)] as 
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Then two subsystems are obtained as follows: 
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We design two LQRs for the two linear subsys-

tems (37) and (38). Consider the intermediate objec-
tive functions 
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Then, the two auxiliary control inputs are derived by 
minimizing J1 and J2 subject to subsystems (37) and 
(38), respectively: 
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where Pl and P2 are the positive-definite solutions to 
the Riccati equations: 
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where r1, r2, Q1=diag{q11, q12, q13}, and Q2=diag{q21, 
q22, q23, q24} are the controller design parameters. The 
nonlinear control law u is acquired by combining 
Eqs. (34) and (43): 
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4  Tracking controller design 
 

The nonlinear control law defined by Eq. (46) is 
designed based on the precise system model (where 
the system uncertainty is Δ=0). However, if the sys-
tem uncertainties are not ignored, the dynamical in-
verse of the plant will deviate from the nominal value, 
which prevents the system from meeting the design 
requirements. Therefore, while designing the control 
law, we employ SRA to analyze the system stability 
and performance. Subsequently, an optimization al-
gorithm is applied to find the optimal parameters of 
the controller, which maximizes the system robust-
ness. The flow diagram of LQR design based on SRA 
is shown in Fig. 1. 

4.1  Design parameter selection 

In Eq. (46), the design parameter vector is de-
fined as 

 
T

1 11 12 13 2 21 22 23 24[ , , , , , , , , ] .r q q q r q q q q=p     (47) 
 
In the closed-loop control system, there is a 

certain map between the design requirements and 
design parameters. Thus, the design parameter space 
is constructed according to the allowable variation 
range of design requirements. 

4.2  Stochastic robustness measurement 

In this section we introduce the measurements of 
stochastic robustness. A detailed theoretical descrip-
tion can be seen in Stengel and Ryan (1991) and Wang 
and Stengel (2001; 2002). The concept of stochastic 
robustness includes stochastic stability and stochastic 
performance analyses. For each design stability and 
performance requirement, define a corresponding 
binary indicator function I[·] as 1 if an acceptable 
system appears and as 0 otherwise. The probability of 
design requirement Pr can be calculated by an integral 
 

 
 

 
 
 
 
 
 Fig. 1  Flow diagram of linear-quadratic regulator design based on stochastic robustness analysis 
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of the corresponding indicator function over the ex-
pected system parameter space. The stochastic ro-
bustness analysis is based on the fitness function 
formalized by combining the probabilities of various 
design requirements with certain weights. 

It is well-known that MCE has been widely used 
to estimate probabilities. The estimates of the proba-
bility and fitness function based on N samples are as 
follows (Wang and Stengel, 2002): 

 

[ ]r
1

1ˆ ( ) ( ), ( ) ,
N

k
k

P I F q C
N =

= ∑p p              (48) 

r1 r2
ˆ( ) ( ( ), ( ), ),J f P P=p p p               (49) 

 
where F(qk) is the plant structure with system pa-
rameter qk selected randomly throughout the param-
eter space and C(p) is the designed controller with 
design parameter p. The estimated fitness function, 
ˆ,J  approaches the true fitness J in the limit as N→∞. 

There are three aspects of flight control robust-
ness for hypersonic flight vehicles, stability, perfor-
mance in velocity tracking response, and performance 
in altitude tracking response, which are considered as 
the evaluative indices for robustness analysis. Table 2 
lists the fitness function chosen to guide the optimal 
search algorithm, which is a weighted sum of 22 
probabilities of design requirements: 

 
22

r
1

( ) ( ),j j
j

J Pω
=

=∑p p                     (50) 

 
where ωj are the weights for the probabilities of var-
ious design requirements. 

4.3  Application of the Chernoff bound 

SRA is based on a stochastic evaluation, such as 
MCE. The important process is to specify the esti-
mated probability of the stochastic algorithm within a 
prior specified accuracy ζ∈(0,1) from the true value 
and with a special confidence 1–μ, μ∈(0,1). This 
means that the algorithm can successfully return an 
approximately correct estimate with a probability of 
1–μ. The key problem is how to determine the sample 
size N to guarantee the suitable estimated accuracy 
and confidence. 
Definition 1 (Piccoli et al., 2009)    For a stochastic 
process, let ζ∈(0, 1) and µ∈(0, l) be the assigned  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
probability levels. The stochastic algorithm is suc-
cessful if it returns, with a probability of at least 1−µ, 
an estimate r̂ ( )P p  of the true probability of perfor-
mance Pr(p) with an error of at most size ζ. Equiva-
lently stated, 
 

( )r r
ˆ ( ) ( ) .P P P ζ µ− > ≤p p               (51) 

 
Bounds on the needed samples can be achieved 

using the well-known Chernoff bounds, which are 
demonstrated by the following definition: 
Definition 2 (Chernoff bound) (Chernoff, 1952)    For 
any ζ∈(0,1) and µ ∈ (0, l), if the sample size 
 

2

1 2ln ,
2

N
ζ µ

≥                         (52) 

 
then the estimated probability is greater than 1−µ, and 
 

r r
ˆ ( ) ( ) .P P ζ− ≤p p  

 
In other words, Eq. (51) holds true. We can make 
good use of Chernoff bounds, as shown in  

Table 2  Stability and performance metrics for a hyper-
sonic flight vehicle 

Metric 
number Weight in J(p) Design requirement 

1 (2) 10.0 (10.0) System stability in velocity 
response (altitude response) 

3 (4) 2.0 (2.0) No reversal in velocity response 
(altitude response) before 
peaking 

5 (6) 2.0 (0.5) Steady error in velocity response 
less than 2.5% (5.0%) 

7 (8) 2.0 (0.5) Steady error in altitude response 
less than 5.0% (10%) 

9 (10) 2.0 (0.5) Overshoot in velocity response 
less than 10% (20%) 

11 (12) 2.0 (0.5) Overshoot in altitude response 
less than 20% (40%) 

13 (14) 2.0 (0.5) 90% rise time in velocity re-
sponse less than 25 s (50 s) 

15 (16) 2.0 (0.5) 90% rise time in altitude re-
sponse less than 50 s (100 s) 

17 (18) 2.0 (0.5) 10% settling time in velocity 
response less than 25 s (50 s) 

19 (20) 2.0 (0.5) 10% settling time in altitude 
response less than 50 s (100 s) 

21 (22) 5.0 (0.5) Maximum change in angle of 
attack less than 3° (5°) 

 



Cao et al. / Front Inform Technol Electron Eng   2017 18(7):882-897 888 

Algorithm 1, to provide information on robustness in 
estimating the probabilities.  
 
 
 
 
 
 
 
 
 
 
 
 

4.4  Optimal design of system robustness 

The target of robust LQR design is to choose the 
design parameters p to guarantee system robustness, 
which fulfills the design requirements on the stability 
and performance of the system without influencing 
the system uncertainties. The key problem of robust 
LQR design is to find the optimal design parameters 
p* in the design parameter space to maximize the 
probability of desired system stability and perfor-
mance. However, contradictions between system 
stability and performance always exist in a closed- 
loop control system. Therefore, to achieve the optimal 
tradeoff between system stability and system per-
formance, optimization techniques are commonly 
used. 

Subject to the fitness function described by 
Eq. (50), two cases are considered: 
 

Case 1: Prj(p) is maximized. 
Case 2: Under the requirement of system relia-

bility, Prj(p) is large enough. 
 

If any one of the two cases occurs, it can be said 
that the robust LQR design is successful. Furthermore, 
if the optimal design parameters p* cannot fulfill the 
design requirements, LQR can be redesigned by 
modifying the design requirements or changing the 
design parameter space. 

 
 

5  Improved hybrid PSO algorithm 
 

To search for the optimal design parameters, in 
this section we propose a specific improved hybrid 

PSO algorithm. Compared with conventional opti-
mization algorithms, the proposed algorithm presents 
a higher search ability. 

5.1  Algorithm introduction 

The genetic algorithm (GA) is a class of random 
search methods that imitate natural evolution. 
Through simple coding techniques and evolution 
manipulations, GA completes searches by mimicking 
natural competitions. Although GA is a probability 
algorithm, it is quite different from general stochastic 
algorithms, which organically combine directional 
search with random search (Goldberg, 1989). Addi-
tionally, GA has potential parallelism, which can 
compare different individuals simultaneously. As a 
result of failing to return population information, the 
algorithm requires more training time to obtain the 
exact solution. In addition, if the initial population, 
crossover probability, and mutation probability se-
lections are unsuitable, early convergence will typi-
cally occur. 

The PSO algorithm was proposed as a bionic 
algorithm, which searches for the optimal solution in 
a multidimensional space through cooperation among 
individuals (Kennedy and Eberhart, 1995). The basic 
idea of PSO is to simulate bird predation. Each parti-
cle moves in the solution space and records the best 
points (both particle and population points). Particles 
update their own velocity and position based on the 
two best points. By constantly updating the extreme 
points, the PSO algorithm quickly determines the 
optimal configuration. 

Considering GA’s high local convergence rate, 
when the iteration achieves the local area around the 
global optimal solution, we choose GA to compensate 
for the slow search speed of PSO algorithms in the 
local space. Fig. 2 shows the sketch of this new hybrid 
PSO algorithm. Starting from the initial point x0, the 
PSO algorithm is used to quickly search the whole 
solution space Rn. When the population of the PSO 
algorithm is achieved around the local area U of the 
global optimal solution, GA replaces PSO to continue  
 
 
 
 
 
 
 

Algorithm 1  Chernoff bounds applied for stochastic 
evaluation 
Input: probability levels ζ, µ∈(0, l) and the desired per-

formance requirements 

Output: empirical probability r̂ ( )P p  for the specified 

design requirements 
1. Determine the finite sample size N=f (ζ, µ) by setting the 

expression in Eq. (52) 
2. Draw N samples for the MCE test as (q1, q2, …, qN) 

3. Return r̂ ( )P p  

 

Fig. 2  Sketch of the new hybrid PSO algorithm 
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GA
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U
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•
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the search. After an appropriate number of iterations, 
the optimal global solution xopt is obtained. 

Whether the proposed hybrid PSO algorithm can 
run effectively relies on the global search ability of 
PSO and the local convergence velocity of GA. To 
enhance the ability of global search, PSO is improved 
by adopting four techniques: uniform initialization of 
population, adaptive Sigmoid inertia weight (Malik et 
al., 2007), asynchronous change in learning factors 
(Ratnaweera et al., 2004), and time factor adjusting to 
weights. To promote the local convergence rate of GA, 
the mutation operator is canceled artificially, and the 
iteration will be implemented in an enclosed space 
and achieve a fast convergence. 

5.2  Algorithm procedure 

The procedure of the novel hybrid multi-  
objective PSO algorithm is shown in Fig. 3. The al-
gorithm procedures can be described as follows: 

1. Given an optimization problem, a mathemat-
ical method is used to describe the actual problem in 
the standard form of a general optimization problem. 

2. The PSO algorithm is applied to deal with the 
optimization problem preliminarily. 

3. When the iteration of the PSO algorithm 
achieves the local area of the global optimal solution, 
combining with the global suboptimal solution, a new 
population is generated. 

4. Beginning with the new population, GA is 
used to quickly search the neighborhood of the global 
optimal solution, and the global optimal solution is 
finally obtained. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.3  Algorithm testing cases 

In this section, we employ three nonlinear 
benchmark functions to verify the effectiveness of the 
proposed hybrid PSO algorithm. The first function is 
the Alpine function: 
 

1 1 2 1 2sin sin ,f x x x x= −                    (53) 

 
where x1, x2∈[0, 10]. The Alpine function has a lot of 
local extreme points, but only a global minimum 
f1

*=−7.8856 (x1=x2=7.917). The second function is 
the Rastrigrin function: 
 

2
2

2 1
1
[ 10cos(2π ) 10],i

i
f x x

=

= − +∑            (54) 

 
where x1, x2∈(−10, 10). The Rastrigrin function is a 
multi-peak function, and obtains the global minimum 
f2

*=0 when x1=x2=0. The third function is the Schaffer 
function: 
 

2 2 2
1 2

3 22 2
1 2

sin 0.5
0.5 ,

1 0.001( )

x x
f

x x

+ −
= +

 + + 
            (55) 

 
where x1, x2∈[−10, 10]. The Schaffer function has 
only a global minimum f3

*=0 when x1=x2=0. 
We use generic GA, generic PSO, and the im-

proved hybrid PSO algorithm proposed in this study 
(denoted as improved PSO) to search for the mini-
mum points of the aforementioned testing functions. 
Each testing experiment is repeated 2000 times. The 
parameter setting of algorithms and the testing results 
are illustrated in Table 3. Compared to generic GA 
and generic PSO, the improved PSO presents the 
mean results closest to the global minimum and the 
smallest standard deviations. Furthermore, the prob-
abilities of reaching the optimal value (denoted as the 
success rate) of the improved PSO algorithm are 
89.4%, 90.2%, and 75.2%, respectively, for the three 
functions, which are the highest values among the 
three algorithms. These testing results indicate that 
the improved hybrid PSO algorithm has better search 
ability and robustness. Fig. 3  Algorithm procedure 
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Global search
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Sub-optimal
solution

Neighborhood of
optimal solution

New population

Local search
by GA

Global optimal
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6  Simulation results 

6.1  Optimal algorithm analysis  

Given the same initial value, three optimal al-
gorithms, the improved hybrid PSO, generic GA, and 
generic PSO, are used to search for the control  
parameters of the AHV controller. The parameter 
allocations for optimal algorithms are shown in  
Table 4. 

 
 
 

 
 
 
 

 
The simulation results are shown in Fig. 4. The x 

axis represents the number of iterations and the y axis 
the maximum value of fitness functions of all the 
population. The fitness function defined in this study 
presents the fitness of particle or chromosome in the 
population, and the objective is to determine the pa-
rameters with the maximum fitness value. Fig. 4 
shows that the generic GA achieves earlier conver-
gence due to the insufficient population size, which 
causes insufficient population diversity. The generic 
PSO algorithm drops into the local area after 15 iter-
ations and the maximum value of the fitness function 
stops at 45.20. The improved PSO algorithm in-
creases the maximum value of the fitness function to 
46.38. Through simulation and comparative analysis, 
we can say that the improved PSO algorithm presents 
a better performance than the generic GA and generic 
PSO algorithms for control parameter determination. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6.2  Robustness analysis 

Chernoff bounds are used to determine the finite 
sample size N for MCE simulation. Set µ=0.025, 
which means the confidence is 97.5%. By setting 
estimate error ζ=0.1, the sample size N for stochastic 
evaluation can be calculated by 

 

2

1 2ln 219.1.
2

N
ζ µ

= ≈  

 
The larger the number of samples, the higher the 

estimation accuracy. In this study, we choose N=230 
and it can be inferred that the accuracy is high. The 
simulation results in Fig. 4 also indicate that the ac-
curacy when N=230 is high enough to present the 
characteristics of the closed-loop system. Then, the 
probability of each requirement can be estimated: 

 

( )r r̂( ) ( ) 0.1 97.5%.P P P− ≤ >p p  

Table 4  Allocation of algorithm parameters 

Algorithm Particle/chromosome 
number 

Maximum number of  
iterations 

Generic GA 50 20 
Generic PSO 16 20 

Improved PSO 16 15 for PSO; 5 for GA 
 

Table 3  Parameter settings and testing results with a population size of 26 

Function Algorithm Maximum number of iterations Mean optimal value Standard  
deviation 

Success rate 
(%) 

Alpine 
Generic GA 30 −7.5360 0.9869 37.35 
Generic PSO 30 −7.4844 1.0462 87.20 

Improved PSO 25 for PSO; 5 for GA −7.5545 0.9612 89.40 

Rastrigrin 
Generic GA 100   0.1434 0.3687 83.35 
Generic PSO 100   0.0530 0.0633   3.00 

Improved PSO 90 for PSO; 10 for GA   0.0434 0.1948 90.20 

Schaffer 
Generic GA 180   0.0091 0.0034   8.20 
Generic PSO 180   0.0036 0.0043 67.00 

Improved PSO 170 for PSO; 10 for GA   0.0025 0.0041 75.20 
 

Fig. 4  Comparison of optimization algorithms 
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This emphasizes that the estimated probability of 
the desired design from the MCE test with an error 
from the true values of less than 10% has a confidence 
of larger than 97.5%. 

6.3  Results of control design 

The control system structure designed in this 
study is shown in Fig. 5. The design parameter space 
is given in Table 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 

The ranges of the additive parametric uncertain-
ties used in the simulations are taken as follows: 

 

1e

3%, 2%, 2%, 2%,

6%, 3%, 10%.M

m I S c

c Cαρ

∆ ≤ ∆ ≤ ∆ ≤ ∆ ≤

∆ ≤ ∆ ≤ ∆ ≤
 (56) 

 
After 15 global search iterations by the PSO 

algorithm and five generations of quick evolution by 
GA, the optimal parameter vector (Eq. (47)) is found 
to be 

 
p*=[1.8374, 4.2973, 77.5720, 130.2691, 5.8562, 

0.4486, 53.8780, 259.4353, 275.6245]. 
 
Substituting p* into the Riccati equations 

(Eqs. (44) and (45)), the positive-definite matrices P1 
and P2 are calculated as 

 
 
 
 
 
 
 
 
 

1

23.655 26.32 2.81
26.32 142.072 15.4678 ,
2.81 15.4678 17.2104

 
 =  
  

P  

2

6.2641 16.7964 13.3452 1.6208
16.7964 221.1962 184.7278 22.6329

.
13.3452 184.7278 477.0357 60.6870
1.6208 22.6329 60.6870 48.2172

 
 
 =
 
 
 

P  

 
To illustrate the advantages and effectiveness of 

the controllers proposed in this study (denoted as 
LQR-SRA), the sliding mode controller (SMC) is 
designed in both velocity and altitude channels. De-
tails of SMC were presented in Fernández and 
Hedrick (1987). The sliding surfaces are designed as 

 
2

1
d
dv ve

t
σ λ = + 

 
, 

2

2
d
dh he
t

σ λ = + 
 

, 

 
where λ1 and λ2 are design parameters and ev=ξ1 and 
eh=η1 are the velocity tracking error and altitude 
tracking error, respectively. Let 1sign( )v vkss = −  and 

2sign( )h hkss = − . Combined with Eq. (34), the con-
trol law of SMC is obtained as 
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(57) 
 

where sign(·) is the sign function and k1 and k2 are the 
positive design parameters. In this simulation, the 
design parameters of SMC are set as λ1=0.2, λ2=0.2, 
k1=5, and k2=10. 

The performances of the tracking velocity 
command and altitude command with nominal pa-
rameters are shown in Figs. 6 and 7, respectively.  
 
 
 
 
 
 
 
 
 

Table 5  Design parameter space 
Parameter Bound 

r1 (0.01, 10) 
q11 (0.01, 10) 
q12 (0.1, 100) 
q13 (0.1, 200) 
r2 (0.01, 10) 
q21 (0.01, 10) 
q22 (0.1, 200) 
q23 (0.1, 300) 
q24 (0.1, 400) 

 

Fig. 5  Control system structure 
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Fig. 6 shows a comparison of the system response due 
to a 100-ft/s step-velocity change command from the 
trimmed condition between SMC and the proposed 
controller (LQR-SRA). For LQR-SRA, the velocity 
converges to 90% of the command value within 11 s 
with a maximum change in altitude of less than 20 ft 
(1% of the command value) and a maximum change 
in angle of attack of less than 1.5°. Fig. 7 shows a 
comparison of the system response due to a 2000-ft 
step-altitude change command from the trimmed 
condition between SMC and LQR-SRA. For LQR- 
SRA, the altitude converges to 90% of the command 
value within 28 s with a maximum change in velocity 
of less than 6 ft/s and a maximum change in angle of 
attack of less than 3.0°. 

As shown in Figs. 6 and 7, compared to SMC, 
LQR-SRA shows faster convergence and more steady 
tracking trajectories in both velocity and altitude 
channels, and offers more steady elevator deflection. 
In contrast, the control inputs of SMC present 
high-frequency chattering in elevator deflection. 
Therefore, the closed-loop system controlled by 
LQR-SRA has a better performance for the tracking 
velocity command and altitude command. 

Assume that all of the parametric uncertainties 
are subject to uniform distribution, and the bounds are 
subject to Eq. (56). The stochastic responses of  
the closed-loop control system to the 100-ft/s 
step-velocity command and 2000-ft step-altitude  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

command are illustrated in Figs. 8 and 9, respectively. 
As shown, the closed-loop system presents good 
tracking performances in the velocity channel and 
altitude channel, in spite of the vibration of nominal 
parameters. For all of the tracking trajectories, there is 
almost no static tracking error in the velocity channel, 
and the maximum static tracking error in the altitude 
channel is less than 2% with respect to the nominal 
value of 2000 ft, which meets the requirements of 
engineering applications. Both figures confirm that 
the LQRs designed in this study achieve good ro-
bustness in the presence of parametric uncertainties. 
 
 
7  Conclusions 
 

This paper provides a robust LQR design strat-
egy for AHVs based on SRA. The general LQR the-
ory was applied for a nonlinear system control. We 
deduced the nonlinear dynamic inverse of the longi-
tudinal dynamics with seven elements of the system 
state variable. Chernoff bounds were used to deter-
mine a finite sample size N=230 for the Monte Carlo 
evaluation test with the desired probability levels as 
ζ=0.1 and µ=0.025, which guarantees the robustness 
of stochastic evaluation. To search for the best design 
parameters of LQRs, we proposed an improved hy-
brid multi-objective PSO algorithm. Simulation re-
sults demonstrated that the improved hybrid PSO 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 6  Comparisons of SMC and LQR-SRA responses to a 100-ft/s step-velocity command with nominal parameters: 

(a) velocity change; (b) altitude change; (c) angle of attack; (d) pitch rate; (e) thrust; (f) elevator deflection 
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algorithm can effectively determine the best solution 
to LQR parameters in a large design parameter space. 
According to the response to a 100-ft/s step-velocity 
command and a 2000-ft step-altitude command, the 
optimal LQRs have good performance and robustness 
in the presence of parametric uncertainties. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Our future work will focus on higher-order 

sliding mode control and fractional-order control for 
flight control of hypersonic flight vehicles, and 
comparisons will be made with the controllers pro-
posed in this paper. 
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Appendix: Expressions of ω1, ω2, Ω1, and Ω2 

 
Vectors ω1, ω2, and F* and matrices Ω1, Ω2, and G* presented in input/output feedback linearization for 

variables V and h, with state variable T[ , , , , , , ]V h qγ α φ φ=x  , are given as follows: 
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