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Abstract:    The Clifford Fourier transform (CFT) can be applied to both vector and scalar fields. However, due to problems with 
big data, CFT is not efficient, because the algorithm is calculated in each semaphore. The sparse fast Fourier transform (sFFT) 
theory deals with the big data problem by using input data selectively. This has inspired us to create a new algorithm called sparse 
fast CFT (SFCFT), which can greatly improve the computing performance in scalar and vector fields. The experiments are im-
plemented using the scalar field and grayscale and color images, and the results are compared with those using FFT, CFT, and 
sFFT. The results demonstrate that SFCFT can effectively improve the performance of multivector signal processing. 
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1  Introduction 
 

Methods have been used to analyze and visualize 
unstructured vector field data. There are basically two 
approaches: extracting features to determine the da-
taset and visualizing an entire dataset. As dataset sizes 
increase, feature extraction becomes increasingly 
important. A method called ‘Clifford Fourier trans-
form (CFT)’ was proposed to apply the Fourier 
transform to vector fields (Ebling and Scheuermann, 
2005; Schlemmer et al., 2005; Hitzer and Mawardi, 
2008). Hitzer and Sangwine (2013) provided an 
overview of the modern development of CFT and 
wavelet transformations. In recent years, a detailed 
algebraic characterization of the continuous mani-
folds of square roots of 1 has been established in all 
real Clifford algebras (Hitzer et al., 2013). This is 

why CFT uses multivector square roots of –1 instead 
of the complex imaginary unit. Based on this, a gen-
eral CFT was introduced (Hitzer, 2013). CFT has 
already become one of the most significant steps in 
image processing and analysis (Cao and Feng, 2010; 
Xu et al., 2011; Cao et al., 2013; Wang et al., 2013), 
network analysis (Li, 2005; Xie et al., 2008; Wang 
et al., 2015), color edge detection (Evans et al., 2000; 
Mishra et al., 2015), and image registration (Batard 
et al., 2010). CFT allows for frequency analysis of 
vector fields and the behavior of vector-valued filters. 
In the frequency space, CFT can transform vectors 
into general Clifford algebra multivectors. Many 
basic vector-valued patterns (such as source, sink, 
saddle points, and potential vortices) can be described 
by a certain number of multivectors in the frequency 
space (Ebling and Scheuermann, 2005). 

On the other hand, explosive growth in data 
makes big data problems a cause for concern. Some 
solutions have already been proposed, such as using 
fast approximate correlation (Mueen et al., 2010), 
sparse matrices (Gilbert and Indyk, 2010), and the 
sparse recovery system (Porat and Strauss, 2012). 
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Iwen (2010) presented a method to estimate the Fou-
rier representation for sparse signals. However, Has-
sanieh et al. (2012b) developed a new approach called 
‘sparse fast Fourier transform (sFFT)’ to process big 
data, especially sparse data. sFFT deals with big data 
problems by using only a small subset of the input 
data to compute a compressed Fourier transform. As a 
result, sFFT is much faster than the fast Fourier 
transform (FFT). sFFT has already been applied to 
areas such as GHz-wide sensing and decoding (Has-
sanieh et al., 2014), light field reconstruction (Shi et 
al., 2014), and the Global Positioning System (GPS) 
(Hassanieh et al., 2012a). Our work is to combine 
sFFT with CFT to operate on multivector signals. 
sFFT can choose ‘large’ coefficients for calculation. 
Combining it with CFT reduces useless or remote 
data, and thus the Fourier transform of multivector 
signals can be computed more efficiently (Schu-
macher and Puschel, 2014).  

 
 

2  Related work 

2.1  Clifford algebra 

Clifford algebra provides a powerful computing 
framework without using coordinate information. 
Hestenes and Sobczyk (1984) used it as an efficient 
and versatile computational tool. It integrates vector 
algebra, matrix algebra, and complex numbers alge-
bra into a coherent mathematical language which not 
only reduces the computation complexity, but also 
improves the computation efficiency (Hestenes, 
1999). 

Let d be a d-dimensional Euclidean vector 
space and Gd a 2d-dimensional real Clifford algebra 
over . One obtains G3 by using the rules of 3D 
Clifford algebra with the given basis {1, e1, e2, e3, e1e2, 
e1e3, e2e3, e1e2e3}: 

 
, 1,2,3,j j j1e e                        (1)     

, 1,2,3,j j j1e e                        (2)            

, 1,2,3, .j k k j j k j ke e e e              (3) 

 
Note that the multiplication of Clifford algebra is 

not commutative. 
We define an arbitrary multivector P as 

3i ( ),P a b                      (4) 
 
with , , a, b 3, i3=e1e2e3, and (i3)2= 1. We call 
such components, , a, i3b, and i3 , as blades of 
Clifford algebra that are generalizations of the con-
cept of scalars and vectors. 

We define the grade projector :j  G3 G3 as 

 

0 1, ,P P a                         (5) 

2 3 3 3i , i .P b P                      (6) 

 
The Clifford product of two vectors a, b 3 

results in 
 

, ,ab a b a b                        (7) 
 
where ,  is the inner product and  is the outer 
product. 

As shown in Eq. (4), a multivector is a linear 
combination of components in different grades. Thus, 
by using linearity, the Clifford product of multivec-
tors involves Clifford products of component blades. 
The appendix in Ebling and Scheuermann (2003) 
contains an example of multiplying multivectors in 
2D, and Table 2 on page 344 in Hitzer (2012) shows 
the multiplication table for G3. 

Further, we have 
 

0 , cos ,ab a b a b                  (8) 

2 sin ,ab a b a b                 (9) 

 
where the usual norm for vectors, 2|| ||ab  

2
2( ) ,ab  and  is the angle between a and b. 

2.2  Clifford convolution 

The convolution theorem states that a convolu-
tion in the time domain is equal to a multiplication in 
the frequency space. Therefore, convolution becomes 
an important tool in signal processing. Bujack et al. 
(2015) presented a convolution theorem for general 
CFTs with separable mappings being orthogonal, 
separable, and linear. It can be interpreted as a  
mutual commutation or anticommutation among the 
functions. 
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Let U, V: d Gd (d=2, 3) be two multivector 
fields. Then the Clifford convolution can be defined 
as 
 

(( )( ) ) ( ) | d |,
d

V U V Ux x         (10) 

 
where x V and U. 

It can be seen that the Clifford convolution is a 
conventional convolution when both fields are scalar. 
Further, let U be a scalar field and V a vector field. 
The Clifford convolution then allows a scalar multi-
plication and vector smoothing model. 

If both V and U are vector fields, we obtain the 
following relationship: 
 

( ) ( ) ( ), ( ) ( ) ( ).V U x V x V U x        

(11) 
 

It means that the convolution in the multivector field 
contains additional information, as the scalar part of 
the convolution result is a conventional convolution. 
Thus, Clifford convolution can be used to better an-
alyze the vector field data. 

2.3  Clifford Fourier transform 

CFT allows a transformation from the position 
space to the frequency space, allowing signals to be 
analyzed in the frequency space. This makes it feasi-
ble to use such features as phases and frequencies of 
the signals. Further, the convolution theorem allows 
better filter response when a signal is analyzed in the 
frequency space (Ebling and Scheuermann, 2005). 
Similarly, Clifford convolution can be transformed 
into the frequency space. Thus, CFT can be developed 
as an extension of the usual Fourier transform for 
vector fields (Schlemmer et al., 2005; Reich and 
Scheuermann, 2010). 

2.3.1  Clifford Fourier transform in the 2D space 

Ebling and Scheuermann (2005) proposed the 
CFT on both scalar and multi-dimensional fields, 
initiating a novel approach to analyzing vector fields. 
Subsequently, the generalization of the Fourier 
transform in Clifford geometric algebra has been 
presented (Hitzer and Mawardi, 2008; Hitzer and 
Sangwine, 2013). 

CFT for multivector-valued functions F: 2 G2 
can be defined as 
 

2

2
2{ }( ) ( )exp( 2 i , )d ,F Fu x x u xF    (12) 

 
where vectors x, u 2.  

Based on Clifford algebra, a 4D multivector field 
can be written as 
 

0 1 1 2 2 12 12

0 1 1 2 1 2 12 2

0 12 2 1 1 2 2

( ) ( ) ( ) ( ) ( )
         = ( ) ( ) ( ) i ( )i
       ( ( ) ( )i ) ( ( ) ( )i ).

F F F F F
F F F F

F F F F1

x x x e x e x e
x x e x e x

x x e x x
   

(13) 
 

Then, considering the linearity of CFT, one  
obtains 
 

0 12 2

1 1 2 2

{ }( ) ( { ( ) ( )i }( ))
  ( { ( ) ( )i }( )).

F F F
F F

1u x x u
e x x u

F F

F
   (14) 

 
It can be seen that 2D CFT is the linear combi-

nation of two traditional complex Fourier transforms. 

2.3.2  Clifford Fourier transform in the 3D space 

CFT for multivector-valued functions F: 3 G3 
can be defined as 

 

3

3
3{ }( ) ( )exp( 2 i , )d ,F Fu x x u xF    (15) 

 

where vectors x, u 3. 
Based on Clifford algebra, an 8D multivector 

field can be written as 
 

0 1 1 2 2 3 3 23 23

31 31 12 12 123 123

0 1 1 2 2 3 3 23 3 1

31 3 2 12 3 3 123 3

i
i i i ,

F F F F F F
F F F

F F F F F
F F F

e e e e
e e e

e e e e
e e

      (16) 

 
which can be seen as the decomposition of an 8D 
multivector field into four complex signals. Each 
complex signal is transformed separately by the 
standard Fourier transform. Then, considering the 
linearity of CFT, one obtains 
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0 123 3

1 23 3 1

2 31 3 2

3 12 3 3

{ }( ) [ { ( ) ( )i }( )]
[ { ( ) ( )i }( )]
[ { ( ) ( )i }( )]
[ { ( ) ( )i }( )] .

F F F
F F
F F
F F

1u x x u
x x u e
x x u e
x x u e

F F

F

F

F

   (17) 

 
This is useful as one can divide multivector al-

gebra into four complex components. Also, the usual 
Fourier transform can be calculated separately for 
each direction {1, e1, e2, e3}. 

 
 

3  Sparse fast Clifford Fourier transform 

3.1  Sparse fast Fourier transform 

Algorithms for computing the Fourier transform 
are inefficient because they take time proportional to 
the output size, and most of the Fourier signal coef-
ficients are small or equal to zero in many applica-
tions. For instance, a normal 16×16 block in a video 
frame is sparse, since it has 228 negligible coeffi-
cients on average. It means that nearly 90% of the 
data are useless. Audio and image data are sparse as 
well. Compression schemes, such as JPEG and MPEG, 
have been provided to use this sparsity. The sFFT 
algorithm uses the sparsity of the signal spectrum and 
computes an approximated or compressed version of 
the Fourier transform. The algorithm uses only a 
small subset of the input data and runs in time pro-
portional to the sparsity or desirable compression. It 
can be faster than that in time proportional to the 
signal length (Hassanieh et al., 2012c).  

There are three stages of sFFT: identification of 
frequencies with large Fourier coefficients, accurate 
estimation of the Fourier coefficients of the frequen-
cies identified in the first stage, and subtraction of the 
contribution of the partial Fourier representation 
computed in the first two stages (Gilbert et al., 2014). 
Generally, repetitions of the three stages are guaran-
teed to concentrate a substantial portion of the energy 
with a high probability. In the first stage, frequencies 
are sampled randomly to obtain permuted Fourier 
coefficients. Then filters are used to divide the per-
muted coefficients into various frequency bands. In 
the final stage, the energy is estimated in each fre-
quency band.  

For the complex affine N-space ,N  the Fourier 

component ˆ Nf  can be defined as 

1

0

1ˆ ( 2 i / )xp ,e
N

j
j

f f j N
N

            (18) 

 
where 0  and j<N. 

Equivalently, one can simply obtain 
 

1

0

ˆ (2 .exp i / )
N

jf f j N                (19) 

 
Two basic Fourier properties are used for ran-

domly permuting Nf  and then ˆ.f  One is the 
scaling property, stating that for j=fcj, we have

 
1

ˆˆ j c ja f  (where c 1 is the inverse of (c mod N)); the 

other is the modulation property, stating that for 
aj=exp(2 ibj/N) fj, we have ˆˆ .j j ba f  Then we ran-

domly select two integers b, c [0, N] and define 
Na  as 

 
2exp( )i / .j cja bj N f                  (20) 

 
Note that for j [0, N 1], â  is a permutation of 

ˆ ,f  as entry f̂  appears in â  as ( c+b) mod N. 

In the simplest case, the Fourier coefficients f̂  
can be computed for each  identified in the first 
stage by using L independent and uniformly distrib-
uted random samples fl (L should be far smaller than 
N) and the estimator: 
 

1
exp(1ˆ 2 )i / ,

L

l
l

f f l N
L

          (21) 

 

It can be seen that f̂  is an unbiased estimator 

for ˆ .f  Therefore, high precision is guaranteed, as  

the estimator can approximate f̂  with a high  
probability. 

Assume that 
 

1,2, ,ˆ ,
m

m Nf                 (22) 

 
which is the approximated sparse Fourier transform 
computed in the previous stage of the current repeti-
tion. Here, 1, 2, …, N are the frequencies that 
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have been identified in the first stage, while 

1 2
, ,..ˆ ˆ ˆ.,

N
f f f  are the estimators whose Fourier 

coefficients are discovered in the second stage. In 
future iterations of all the stages, each sampled entry 
of f and fj can be replaced with 
 

1

ˆ 2exp i / .( )
m

N

j m
m

f f j N                 (23) 

 
In most cases, the entries of f used in each itera-

tion can be predetermined, and then be used to update 
themselves all. These ‘updated samples’ are used in 
subsequent repetitions of the three stages (Gilbert 
et al., 2014). 

3.2  Sparse fast Clifford Fourier transform 

Assume that a signal f has k nonzero coefficients. 
We can regard the signal as k-sparse. More often, we 
calculate a signal’s k largest coefficients; thus, we call 
it ‘approximately k-sparse’. If its CFT is ˆ ,f  then an 

approximation f̂  to ˆ ,f  of an algorithm is required 

to be output to meet the following 2/ 2 guarantee: 
 

-sparse 2 2
ˆ ˆ ˆmin ,

k
C

y
f f f y              (24) 

 
where y is a k-sparse standard reference. Note that the 
minimization is over k-sparse signals, and C is an 
approximation factor. Further, if k is small enough, 
the output of the sparse fast Clifford Fourier trans-
form (SFCFT) can be expressed succinctly. The key 
to SFCFT is to filter useless and negligible coeffi-
cients, and then implement CFT.  

Fig. 1 shows an example of normalizing a 
k-sparse vector field. Assume that a vector field 
(Fig. 1b) is sampled over a given cube (Fig. 1a). For 
each face of the cube, there is a vector ai (i=0, 1, …) 
on each sample point. Place the tail of each sample 
vector at the origin. Then normalize these vectors to 
form trivectors 1 2/ 6 .i i ia a a  Sum the trivectors 
over all six faces of the cube (Fig. 1c). Note that such 
a trivector is not a triple of vectors, but a volume in 
space. The magnitude of the resulting trivector will be 
the volume of the sphere approximately. Fig. 1d 
shows the estimated k-sparse transformed vector field 
with an equal result. The normalization is carried out 
using the following steps: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

1. Window function 
Definition 1 (Window function)    For an n- 
dimensional signal, a constant >0, and a parameter 
>0, we define the window function w( , , ) to be a 

symmetric vector F n with [ , ]. The set of 
nonzero coordinates of vector F is nzc(F) [ /2, 

/2], and 0̂
ˆ1, and  0,iF F for i [ n, n]. 

For each  and , a standard window function ( , 
, O(log(1/ )/ )) exists (Smith, 2011), since one can 

obtain a standard window function through taking a 

Gaussian with standard deviation log( )/  

and truncating it at =O(log(1/ )/ ). 
Definition 1 means that the window function w 

works like a filter, allowing us to concentrate on a 
subset of the Clifford Fourier coefficients. 

2. Spectral permutation: This step allows us to 
permute the Clifford Fourier spectrum by permuting 
the time domain as follows: 
Lemma 1    Given a constant vector a n, a random 
integer , and an integer [n], we define a transform 
T , : (T , a)i=a i+ , which refers to the permutation of 

the components of a. Then, ,, ,( ) )ˆ ( .i
i ji

TaT a a  

Proof    m, we have 

(a) (b)

(c) (d)  
Fig. 1  Example of normalizing a k-sparse vector field: 
(a) the given cube; (b) normalized vector field; (c) 
trivectors over all six faces of the cube; (d) estimated 
k-sparse transformed vector field with an equal result 
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1

1

1

( )
,

1 1
( )

ˆ .

n n
mj m j

j ji i
j j

m
m

T a a

a

a
 

 
Varying the permutation can vary the set of co-

efficients binned to a bucket. Note that for simplicity, 
our algorithm is analyzed on the condition that n is a 
power of two. 

3. Subsampled CFT: suppose a vector na  
and a parameter B dividing n, one obtains 

 

( / )ˆ ˆ .i i n By a                          (25) 

 
Lemma 2    ŷ  is the B-dimensional CFT of iy  

/ 1

0
.n B

ii
a

 
Proof    

1 1 / 1
( / ) ( ) /

( / )
0 0 0

ˆ
n B n B

ij n B i Bj m n B
i n B j Bj m

j t j
a a a   

1 / 1 1
/ /

0 0 0

ˆ .
B n B B

imn B imn B
Bj m i

m j m
a y ya

 
 

4. Location loops 
Definition 2 (Hash function)    Given a parameter B 
that divides n, we define a hash function h : [n] [B] 
by h (i)=round( iB/n) and an ‘offset’ o : [n]  
[ n/(2B), n/(2B)] by o (i)= i h (i)(n/B), where [n]= 
{0, 1, …, n 1}. 

The location loops begin with a given parameter 
d and then output a parameter J that controls to find 
the coordinate of each large coefficient, and a set I [n] 
of coordinates that contains each large coefficient. 

5. Estimation loops: given a set I [n], we define 
G as a window function: w(1/B, , ) and y=G (T ,  a); 
thus, for i I, estimate â  as ˆˆ ˆ ,   

i i

i
i h oa z G  

where ( / ) .ˆî i n Bz y  This estimates each coordinate 

with a good probability.  
Fig. 2 shows an example of loops of the algo-

rithm when the input is sparse. Note that for simplicity, 
the process is analyzed only in the scalar field. The 
algorithm outputs T ,  a and obtains the spectrum 
permutation by permuting the Clifford algebra sam-
ples in the time domain (Fig. 2a). The algorithm 
computes signal f=G T ,  a in the time domain 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(Fig. 2b). It can be seen that the spectrum of f is large 
around the large coordinates. The algorithm computes 

the subsampling of f̂  (Fig. 2c). Finally, the algo-
rithm outputs the coordinates of each large coefficient 
(Fig. 2d). Note that there is a ‘hash collision’ when 
two coordinates are too close in the permutation. It 
results in missing the second coordinate from the left 
one. 

Fig. 2  Results of estimating large regions in the scalar 
field: (a) permuted signal; (b) convolved signal; (c) actu-
ally computed samples; (d) estimated large regions 
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3.3  The proposed algorithm 

We use Clifford algebra to divide a multivector 
into a Clifford basis {1, e1, e2, e3, ...} and transform a 
Clifford basis into complex signals, as in Eqs. (13) 
and (16). Then we calculate the Fourier transform of 
each complex signal separately. The Fourier trans-
form is usually dominated by a small number of 
‘peaks’, meaning that it is sparse. The primary algo-
rithm works by first ‘locating’ a set of loops that 

contain most of the peaks and then ‘estimating’ f̂  to 
obtain  ̂ .z  Thus, we can calculate the k-sparse Fourier 
transform as mentioned before. With the property of 
linearity, we add up each transform to obtain the final 
transform. The proposed method is provided in  
Algorithm 1. 
 
 
4  Experiment analysis 
 

In this section, we compare the SFCFT algo-
rithm to several existing FFT implementations and 
demonstrate how SFCFT provides a better computa-
tional performance when processing multivector 
signals. We evaluate SFCFT performance in com-
parison to the fastest Fourier transform in the West 
(FFTW) (Frigo and Johnson, 2005), sFFT1.0, 
sFFT2.0 (Hassanieh et al., 2012c), and FCFT 
(Schlemmer et al., 2005) in the scalar field. FFTW is 
the fastest public implementation for computing FFT. 
sFFT is the implementation for computing sFFT. 
Compared with sFFT1.0, sFFT2.0 adds a heuristic to 
improve the runtime. FCFT is also a fast algorithm for 
computing CFT. We fix the signal size and signal 
sparsity, and present the runtime and robustness of the 
compared algorithms in Figs. 3–5. In higher- 
dimensional fields, we implement the algorithms on 
processing multispectral images and present the 
runtime and spectrum map in Figs. 6 and 7. For ac-
curacy, each experiment is run more than 5000 times. 
Each experiment is implemented on a 2.40 GHz 
Core™ i5 processor running Ubuntu 15.01 with a  
4 GB RAM. 

4.1  Performance in the scalar field 

4.1.1  Runtime vs. signal size 

Here, the signal sparsity parameter is fixed to 
k=50, and we compute the runtime of each algorithm  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

for five different signal sizes: 216, 217, 218, 219, and 220. 
Table 1 summarizes the runtimes for processing var-
ious signal sizes using SFCFT, sFFT1.0, sFFT2.0, 
FCFT, and FFTW. Fig. 3 shows comparisons among 
these algorithms. 

As expected, the runtime of each algorithm is 
approximately linear (Fig. 3). However, Fig. 3 
demonstrates that for signal size n>216, SFCFT is 
faster than FFTW and FCFT when they have to  

Algorithm 1  Sparse fast Clifford Fourier transform
Input: a multivector signal 
Output: result of SFCFT 
1. Extract the Clifford basis components of the multivector 
2. Reconstruct the components to obtain vectors 
 

0 123 3

1 23 3

2 31 3

3 12 3

[ ( ) ( ) ]
[ ( ) ( ) ]
[ ( ) ( ) ]
[ ( ) ( ) ]

F x F x i
F x F x i
F x F x i
F x F x i

1

2

3

1
e
e
e

 

 
// For each vector, it is appropriate to use sFFT,  
// as it is sparse 

3. Run a number of location loops, returning L sets of coor-
dinates I1, I2, …, IL 

4. Randomly choose a  invertible mod n and [n], and 
permute input vector f with permutation T , : (T , f)j=f j+

5. Use a flat window function G, and compute the filtered and 
permuted vector y=G (T , f) 

6. With B dividing n, compute ( / )ˆ ˆ j n Byz  for j [B] 

7. Keep only the d k coordinates of the maximum magnitude 
in ẑ  

8. Reverse steps 5–7 as a hash function h : [n] [B] 
9. Count the number of occurrences of each coordinate j

found, i.e., sj=|{r|j Ir}| 
10. Keep only the coordinates that occur in at least half of the 

location loops: 
 

I ={j I1 I2 … IL|sj>L/2} 
 
11. Run a number of estimation loops on I , and return sets of 

frequency coefficients ˆ r
jf  

// These loops work similarly to location loops in  
// steps 4–6 and the next step is: given a set of coordinates
// I, estimate ˆ

jf  as ( ) ( )
ˆ ˆˆ /j

h j jjf z G  

12. Take median real and imaginary components separately 
and estimate each frequency coefficient ˆ

jf  as 
 

median{ˆ {1,2 }, }| ,r
j j r Lff  

 
13. Based on the linearity of CFT, add up ˆ

jf  to obtain the 

output 



Wang et al. / Front Inform Technol Electron Eng   2017 18(8):1131-1141 1138 

recover exactly 50 nonzero coefficients. Thus, we can 
see that the slopes of the lines for FFTW and FCFT 
are larger than those for sFFT1.0, sFFT2.0, and 
SFCFT. It means that FFTW and FCFT do not effi-
ciently process signals with large sizes. SFCFT is 
slower than sFFT1.0 and sFFT2.0, because SFCFT 
spends a certain amount of time for Clifford algebra 
operations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.1.2  Runtime vs. sparsity (k) 

In this experiment, the signal size is fixed to 
n=220, and the runtime of each algorithm is calculated. 
We choose sparsity parameter k from 50 to 500. The 
experiment is repeated 50 times for each value of k. 
Table 2 summarizes the runtimes for processing var-
ious signal sparsities using SFCFT, sFFT1.0, sFFT2.0, 
FCFT, and FFTW. Fig. 4 illustrates the comparison 
among these algorithms. 

Fig. 4 shows that the runtime of each algorithm 
is approximately linear. Note that FFTW and FCFT 
are independent of sparsity k. It can be seen that when 
a sparse approximation of the Fourier transform is 
available, SFCFT, sFFT1.0, and sFFT2.0 greatly im-
prove the runtime performances and extend the range 
of applications. Further, SFCFT, sFFT1.0, and 
sFFT2.0 are faster than FFTW and FCFT when spar-
sity parameter k is small enough (Fig. 4). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.1.3  Robustness to noise 

Here, we choose signal size n=220 and sparsity 
parameter k=50. For robustness, we add Gaussian 
noise to signals and run each experiment with dif-
ferent signal-to-noise ratios (SNRs). SNR is changed 
by changing the Gaussian noise. For each variance of 
the Gaussian noise, we regenerate new cases of noises 
and signals to run each experiment 5000 times. For 
each run, we compute the error metric as the average 
error between the best k-sparse approximation of x̂  
and the output approximation x̂  which is restricted 
to its k largest entries. This allows us to check whether 
our SFCFT can improve its performance in terms of 
runtime without reducing its robustness to noise. 

The average errors per entry for SFCFT, sFFT1.0, 
sFFT 2.0, FCFT, and FFTW are shown in Fig. 5. It 
can be seen that the performances of all these algo-
rithms are stable under noise, and SFCFT is more 
robust to noise than FFTW and FCFT. 

4.2  Performance using 2D grayscale images 

In this experiment, we apply our algorithm in 2D 
grayscale image Fourier transform and compare it 
with FFT and CFT. We choose a ‘Lena’ grayscale 
image (512×512) to evaluate the performance. Re-
sults show that our SFCFT is the fastest, since SFCFT 
computes data directly in the spatial domain first, and 
then computes the effective coefficients. 
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Fig. 3  Runtimes of the compared algorithms for different 
signal sizes 

Table 1  Runtimes of each algorithm at different signal 
sizes 

Signal 
size 

Runtime (ms) 
SFCFT sFFT2.0 sFFT1.0 FFTW FCFT

216 0.4031 0.3471 0.3615 0.2028 0.8804
217 0.6234 0.5218 0.5804 0.4405 1.0615
218 0.8098 0.7048 0.7595 1.1626 1.6095
219 1.5343 0.9578 1.2825 2.1543 2.8825
220 3.3743 1.8775 2.5088 4.5130 5.5088

Table 2  Runtimes of each algorithm with different 
sparsity parameters 

k 
Runtime (ms) 

SFCFT sFFT2.0 sFFT1.0 FFTW FCFT
50 3.3743 1.8875 2.1088 4.5130 5.7505
100 3.7175 2.9301 3.3965 4.5130 5.7505
200 4.6654 3.8355 4.2505 4.5130 5.7505
500 6.5449 5.3826 5.8371 4.5130 5.7505
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Fig. 4  Runtimes of the compared algorithms for different 
sparsity parameters 
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Further, Figs. 6b–6d show that SFCFT outputs a 

clearer spectrum map than FFT and CFT. It means 
that SFCFT presents more image data information. As 
mentioned before, compared with the traditional 
Fourier transform algorithm, our SFCFT algorithm 
has lower error rates. SFCFT transforms the original 
field into a field where nonzero Fourier coefficients 
exist. This improves SFCFT’s robustness to noise. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.3  Performance using color images 

In this experiment, we use SFCFT in processing 
higher-dimensional signals. We apply our algorithm 
in color-image processing and compare the results 
with those using FFT and CFT. We choose a ‘Lena’ 
RGB image (512×512) to evaluate the performance of 
the algorithm. An RGB image has three color- 

channels (i.e., red, green, and blue channels); thus, 
FFT is calculated for each color-channel separately. It 
means that three grayscale Fourier transforms are 
calculated for each channel. 

However, SFCFT can extract the multivectors 
from the color-image data and transform them into 
complex signals by implementing the Clifford algebra 
and then calculating their Fourier transformations in a 
numerical way. A 3D vector field is transformed into a 
multivector field with only bivector and vector parts 
that are unequal to zero, as bivector and vector form 
three complex signals. Thus, we can see from Fig. 7 
that the SFCFT algorithm is much faster than FFT and 
CFT, and its frequency spectrum map is clearer. It 
means that SFCFT presents more image data infor-
mation. SFCFT can discover both geometric and 
spectral information of the multispectral image. The 
wider the bands of the multispectral image, the more 
outstanding the SFCFT. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5  Conclusions 
 

In this paper, we have proposed a novel algo-
rithm called the ‘sparse fast Clifford Fourier trans-
form’, which combines the sparse Fourier transform 
with CFT to process multivector signals. We have 

 
Fig. 7  The original RGB image (a) and the frequency 
spectrum maps with FFT (b), CFT (c), and SFCFT (d)  
The runtimes of FFT, CFT, and SFCFT are 0.195382, 
0.774559, and 0.016852 s, respectively. References to color 
refer to the online version of this figure 

 
Fig. 6  The original image (a) and the frequency spectrum 
maps with FFT (b), CFT (c), and SFCFT (d)  
The runtimes of FFT, CFT, and SFCFT are 0.029599, 
0.054489, and 0.006536 s, respectively 
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Fig. 5  Robustness to noise of the compared algorithms
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discussed the application of SFCFT to the scalar field 
and grayscale and color image processing. The results 
demonstrate that SFCFT can effectively improve the 
performance of multivector signal processing. Our 
method is available in most vector fields; however, it 
may not be sparse for a large number of vectors 
concentrated in specific subareas. As next steps, we 
will measure the uncertainties to indicate the im-
portance of matches, and offer some improvements to 
the preliminary segmentation and transformation 
computed on each segment. 
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