
Wang et al. / Front Inform Technol Electron Eng 2017 18(8):1131-1141 1131

Sparse fast Clifford Fourier transform*

Rui WANG1, Yi-xuan ZHOU1, Yan-liang JIN1, Wen-ming CAO†‡2,3
(1School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China)

(2College of Information Engineering, Shenzhen University, Shenzhen 518060, China)
(3Department of Electrical and Computer Engineering, University of Missouri, Columbia 65211, USA)

†E-mail: wmcao@szu.edu.cn
Received Dec. 9, 2015; Revision accepted Aug. 23, 2016; Crosschecked Aug. 24, 2017

Abstract: The Clifford Fourier transform (CFT) can be applied to both vector and scalar fields. However, due to problems with
big data, CFT is not efficient, because the algorithm is calculated in each semaphore. The sparse fast Fourier transform (sFFT)
theory deals with the big data problem by using input data selectively. This has inspired us to create a new algorithm called sparse
fast CFT (SFCFT), which can greatly improve the computing performance in scalar and vector fields. The experiments are im-
plemented using the scalar field and grayscale and color images, and the results are compared with those using FFT, CFT, and
sFFT. The results demonstrate that SFCFT can effectively improve the performance of multivector signal processing.

Key words: Sparse fast Fourier transform (sFFT); Clifford Fourier transform (CFT); Sparse fast Clifford Fourier transform

(SFCFT); Clifford algebra
http://dx.doi.org/10.1631/FITEE.1500452 CLC number: TP391

1 Introduction

Methods have been used to analyze and visualize
unstructured vector field data. There are basically two
approaches: extracting features to determine the da-
taset and visualizing an entire dataset. As dataset sizes
increase, feature extraction becomes increasingly
important. A method called ‘Clifford Fourier trans-
form (CFT)’ was proposed to apply the Fourier
transform to vector fields (Ebling and Scheuermann,
2005; Schlemmer et al., 2005; Hitzer and Mawardi,
2008). Hitzer and Sangwine (2013) provided an
overview of the modern development of CFT and
wavelet transformations. In recent years, a detailed
algebraic characterization of the continuous mani-
folds of square roots of 1 has been established in all
real Clifford algebras (Hitzer et al., 2013). This is

why CFT uses multivector square roots of –1 instead
of the complex imaginary unit. Based on this, a gen-
eral CFT was introduced (Hitzer, 2013). CFT has
already become one of the most significant steps in
image processing and analysis (Cao and Feng, 2010;
Xu et al., 2011; Cao et al., 2013; Wang et al., 2013),
network analysis (Li, 2005; Xie et al., 2008; Wang
et al., 2015), color edge detection (Evans et al., 2000;
Mishra et al., 2015), and image registration (Batard
et al., 2010). CFT allows for frequency analysis of
vector fields and the behavior of vector-valued filters.
In the frequency space, CFT can transform vectors
into general Clifford algebra multivectors. Many
basic vector-valued patterns (such as source, sink,
saddle points, and potential vortices) can be described
by a certain number of multivectors in the frequency
space (Ebling and Scheuermann, 2005).

On the other hand, explosive growth in data
makes big data problems a cause for concern. Some
solutions have already been proposed, such as using
fast approximate correlation (Mueen et al., 2010),
sparse matrices (Gilbert and Indyk, 2010), and the
sparse recovery system (Porat and Strauss, 2012).

Frontiers of Information Technology & Electronic Engineering
www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com
ISSN 2095-9184 (print); ISSN 2095-9230 (online)
E-mail: jzus@zju.edu.cn

‡ Corresponding author
* Project supported by the National Natural Science Foundation of
China (Nos. 61301027, 61375015, and 11274226)

 ORCID: Yi-xuan ZHOU, http://orcid.org/0000-0002-5008-5802
© Zhejiang University and Springer-Verlag GmbH Germany 2017

Administrator
新建图章

http://crossmark.crossref.org/dialog/?doi=10.1631/FITEE.1500452&domain=pdf

Wang et al. / Front Inform Technol Electron Eng 2017 18(8):1131-1141 1132

Iwen (2010) presented a method to estimate the Fou-
rier representation for sparse signals. However, Has-
sanieh et al. (2012b) developed a new approach called
‘sparse fast Fourier transform (sFFT)’ to process big
data, especially sparse data. sFFT deals with big data
problems by using only a small subset of the input
data to compute a compressed Fourier transform. As a
result, sFFT is much faster than the fast Fourier
transform (FFT). sFFT has already been applied to
areas such as GHz-wide sensing and decoding (Has-
sanieh et al., 2014), light field reconstruction (Shi et
al., 2014), and the Global Positioning System (GPS)
(Hassanieh et al., 2012a). Our work is to combine
sFFT with CFT to operate on multivector signals.
sFFT can choose ‘large’ coefficients for calculation.
Combining it with CFT reduces useless or remote
data, and thus the Fourier transform of multivector
signals can be computed more efficiently (Schu-
macher and Puschel, 2014).

2 Related work

2.1 Clifford algebra

Clifford algebra provides a powerful computing
framework without using coordinate information.
Hestenes and Sobczyk (1984) used it as an efficient
and versatile computational tool. It integrates vector
algebra, matrix algebra, and complex numbers alge-
bra into a coherent mathematical language which not
only reduces the computation complexity, but also
improves the computation efficiency (Hestenes,
1999).

Let d be a d-dimensional Euclidean vector
space and Gd a 2d-dimensional real Clifford algebra
over . One obtains G3 by using the rules of 3D
Clifford algebra with the given basis {1, e1, e2, e3, e1e2,
e1e3, e2e3, e1e2e3}:

, 1,2,3,j j j1e e (1)

, 1,2,3,j j j1e e (2)

, 1,2,3, .j k k j j k j ke e e e (3)

Note that the multiplication of Clifford algebra is

not commutative.
We define an arbitrary multivector P as

3i (),P a b (4)

with , , a, b 3, i3=e1e2e3, and (i3)2= 1. We call
such components, , a, i3b, and i3 , as blades of
Clifford algebra that are generalizations of the con-
cept of scalars and vectors.

We define the grade projector :j G3 G3 as

0 1, ,P P a (5)

2 3 3 3i , i .P b P (6)

The Clifford product of two vectors a, b 3

results in

, ,ab a b a b (7)

where , is the inner product and is the outer
product.

As shown in Eq. (4), a multivector is a linear
combination of components in different grades. Thus,
by using linearity, the Clifford product of multivec-
tors involves Clifford products of component blades.
The appendix in Ebling and Scheuermann (2003)
contains an example of multiplying multivectors in
2D, and Table 2 on page 344 in Hitzer (2012) shows
the multiplication table for G3.

Further, we have

0 , cos ,ab a b a b (8)

2 sin ,ab a b a b (9)

where the usual norm for vectors, 2|| ||ab

2
2() ,ab and is the angle between a and b.

2.2 Clifford convolution

The convolution theorem states that a convolu-
tion in the time domain is equal to a multiplication in
the frequency space. Therefore, convolution becomes
an important tool in signal processing. Bujack et al.
(2015) presented a convolution theorem for general
CFTs with separable mappings being orthogonal,
separable, and linear. It can be interpreted as a
mutual commutation or anticommutation among the
functions.

Wang et al. / Front Inform Technol Electron Eng 2017 18(8):1131-1141 1133

Let U, V: d Gd (d=2, 3) be two multivector
fields. Then the Clifford convolution can be defined
as

(()()) () | d |,
d

V U V Ux x (10)

where x V and U.

It can be seen that the Clifford convolution is a
conventional convolution when both fields are scalar.
Further, let U be a scalar field and V a vector field.
The Clifford convolution then allows a scalar multi-
plication and vector smoothing model.

If both V and U are vector fields, we obtain the
following relationship:

() () (), () () ().V U x V x V U x

(11)

It means that the convolution in the multivector field
contains additional information, as the scalar part of
the convolution result is a conventional convolution.
Thus, Clifford convolution can be used to better an-
alyze the vector field data.

2.3 Clifford Fourier transform

CFT allows a transformation from the position
space to the frequency space, allowing signals to be
analyzed in the frequency space. This makes it feasi-
ble to use such features as phases and frequencies of
the signals. Further, the convolution theorem allows
better filter response when a signal is analyzed in the
frequency space (Ebling and Scheuermann, 2005).
Similarly, Clifford convolution can be transformed
into the frequency space. Thus, CFT can be developed
as an extension of the usual Fourier transform for
vector fields (Schlemmer et al., 2005; Reich and
Scheuermann, 2010).

2.3.1 Clifford Fourier transform in the 2D space

Ebling and Scheuermann (2005) proposed the
CFT on both scalar and multi-dimensional fields,
initiating a novel approach to analyzing vector fields.
Subsequently, the generalization of the Fourier
transform in Clifford geometric algebra has been
presented (Hitzer and Mawardi, 2008; Hitzer and
Sangwine, 2013).

CFT for multivector-valued functions F: 2 G2
can be defined as

2

2
2{ }() ()exp(2 i ,)d ,F Fu x x u xF (12)

where vectors x, u 2.

Based on Clifford algebra, a 4D multivector field
can be written as

0 1 1 2 2 12 12

0 1 1 2 1 2 12 2

0 12 2 1 1 2 2

() () () () ()
 = () () () i ()i
 (() ()i) (() ()i).

F F F F F
F F F F

F F F F1

x x x e x e x e
x x e x e x

x x e x x

(13)

Then, considering the linearity of CFT, one
obtains

0 12 2

1 1 2 2

{ }() ({ () ()i }())
 ({ () ()i }()).

F F F
F F

1u x x u
e x x u

F F

F
 (14)

It can be seen that 2D CFT is the linear combi-

nation of two traditional complex Fourier transforms.

2.3.2 Clifford Fourier transform in the 3D space

CFT for multivector-valued functions F: 3 G3
can be defined as

3

3
3{ }() ()exp(2 i ,)d ,F Fu x x u xF (15)

where vectors x, u 3.
Based on Clifford algebra, an 8D multivector

field can be written as

0 1 1 2 2 3 3 23 23

31 31 12 12 123 123

0 1 1 2 2 3 3 23 3 1

31 3 2 12 3 3 123 3

i
i i i ,

F F F F F F
F F F

F F F F F
F F F

e e e e
e e e

e e e e
e e

 (16)

which can be seen as the decomposition of an 8D
multivector field into four complex signals. Each
complex signal is transformed separately by the
standard Fourier transform. Then, considering the
linearity of CFT, one obtains

Wang et al. / Front Inform Technol Electron Eng 2017 18(8):1131-1141 1134

0 123 3

1 23 3 1

2 31 3 2

3 12 3 3

{ }() [{ () ()i }()]
[{ () ()i }()]
[{ () ()i }()]
[{ () ()i }()] .

F F F
F F
F F
F F

1u x x u
x x u e
x x u e
x x u e

F F

F

F

F

 (17)

This is useful as one can divide multivector al-

gebra into four complex components. Also, the usual
Fourier transform can be calculated separately for
each direction {1, e1, e2, e3}.

3 Sparse fast Clifford Fourier transform

3.1 Sparse fast Fourier transform

Algorithms for computing the Fourier transform
are inefficient because they take time proportional to
the output size, and most of the Fourier signal coef-
ficients are small or equal to zero in many applica-
tions. For instance, a normal 16×16 block in a video
frame is sparse, since it has 228 negligible coeffi-
cients on average. It means that nearly 90% of the
data are useless. Audio and image data are sparse as
well. Compression schemes, such as JPEG and MPEG,
have been provided to use this sparsity. The sFFT
algorithm uses the sparsity of the signal spectrum and
computes an approximated or compressed version of
the Fourier transform. The algorithm uses only a
small subset of the input data and runs in time pro-
portional to the sparsity or desirable compression. It
can be faster than that in time proportional to the
signal length (Hassanieh et al., 2012c).

There are three stages of sFFT: identification of
frequencies with large Fourier coefficients, accurate
estimation of the Fourier coefficients of the frequen-
cies identified in the first stage, and subtraction of the
contribution of the partial Fourier representation
computed in the first two stages (Gilbert et al., 2014).
Generally, repetitions of the three stages are guaran-
teed to concentrate a substantial portion of the energy
with a high probability. In the first stage, frequencies
are sampled randomly to obtain permuted Fourier
coefficients. Then filters are used to divide the per-
muted coefficients into various frequency bands. In
the final stage, the energy is estimated in each fre-
quency band.

For the complex affine N-space ,N the Fourier

component ˆ Nf can be defined as

1

0

1ˆ (2 i /)xp ,e
N

j
j

f f j N
N

 (18)

where 0 and j<N.

Equivalently, one can simply obtain

1

0

ˆ (2 .exp i /)
N

jf f j N (19)

Two basic Fourier properties are used for ran-

domly permuting Nf and then ˆ.f One is the
scaling property, stating that for j=fcj, we have

1

ˆˆ j c ja f (where c 1 is the inverse of (c mod N)); the

other is the modulation property, stating that for
aj=exp(2 ibj/N) fj, we have ˆˆ .j j ba f Then we ran-

domly select two integers b, c [0, N] and define
Na as

2exp()i / .j cja bj N f (20)

Note that for j [0, N 1], â is a permutation of

ˆ ,f as entry f̂ appears in â as (c+b) mod N.

In the simplest case, the Fourier coefficients f̂
can be computed for each identified in the first
stage by using L independent and uniformly distrib-
uted random samples fl (L should be far smaller than
N) and the estimator:

1
exp(1ˆ 2)i / ,

L

l
l

f f l N
L

 (21)

It can be seen that f̂ is an unbiased estimator

for ˆ .f Therefore, high precision is guaranteed, as

the estimator can approximate f̂ with a high
probability.

Assume that

1,2, ,ˆ ,
m

m Nf (22)

which is the approximated sparse Fourier transform
computed in the previous stage of the current repeti-
tion. Here, 1, 2, …, N are the frequencies that

Wang et al. / Front Inform Technol Electron Eng 2017 18(8):1131-1141 1135

have been identified in the first stage, while

1 2
, ,..ˆ ˆ ˆ.,

N
f f f are the estimators whose Fourier

coefficients are discovered in the second stage. In
future iterations of all the stages, each sampled entry
of f and fj can be replaced with

1

ˆ 2exp i / .()
m

N

j m
m

f f j N (23)

In most cases, the entries of f used in each itera-

tion can be predetermined, and then be used to update
themselves all. These ‘updated samples’ are used in
subsequent repetitions of the three stages (Gilbert
et al., 2014).

3.2 Sparse fast Clifford Fourier transform

Assume that a signal f has k nonzero coefficients.
We can regard the signal as k-sparse. More often, we
calculate a signal’s k largest coefficients; thus, we call
it ‘approximately k-sparse’. If its CFT is ˆ ,f then an

approximation f̂ to ˆ ,f of an algorithm is required

to be output to meet the following 2/ 2 guarantee:

-sparse 2 2
ˆ ˆ ˆmin ,

k
C

y
f f f y (24)

where y is a k-sparse standard reference. Note that the
minimization is over k-sparse signals, and C is an
approximation factor. Further, if k is small enough,
the output of the sparse fast Clifford Fourier trans-
form (SFCFT) can be expressed succinctly. The key
to SFCFT is to filter useless and negligible coeffi-
cients, and then implement CFT.

Fig. 1 shows an example of normalizing a
k-sparse vector field. Assume that a vector field
(Fig. 1b) is sampled over a given cube (Fig. 1a). For
each face of the cube, there is a vector ai (i=0, 1, …)
on each sample point. Place the tail of each sample
vector at the origin. Then normalize these vectors to
form trivectors 1 2/ 6 .i i ia a a Sum the trivectors
over all six faces of the cube (Fig. 1c). Note that such
a trivector is not a triple of vectors, but a volume in
space. The magnitude of the resulting trivector will be
the volume of the sphere approximately. Fig. 1d
shows the estimated k-sparse transformed vector field
with an equal result. The normalization is carried out
using the following steps:

1. Window function
Definition 1 (Window function) For an n-
dimensional signal, a constant >0, and a parameter
>0, we define the window function w(, ,) to be a

symmetric vector F n with [,]. The set of
nonzero coordinates of vector F is nzc(F) [/2,

/2], and 0̂
ˆ1, and 0,iF F for i [n, n].

For each and , a standard window function (,
, O(log(1/)/)) exists (Smith, 2011), since one can

obtain a standard window function through taking a

Gaussian with standard deviation log()/

and truncating it at =O(log(1/)/).
Definition 1 means that the window function w

works like a filter, allowing us to concentrate on a
subset of the Clifford Fourier coefficients.

2. Spectral permutation: This step allows us to
permute the Clifford Fourier spectrum by permuting
the time domain as follows:
Lemma 1 Given a constant vector a n, a random
integer , and an integer [n], we define a transform
T , : (T , a)i=a i+ , which refers to the permutation of

the components of a. Then, ,, ,())ˆ (.i
i ji

TaT a a

Proof m, we have

(a) (b)

(c) (d)
Fig. 1 Example of normalizing a k-sparse vector field:
(a) the given cube; (b) normalized vector field; (c)
trivectors over all six faces of the cube; (d) estimated
k-sparse transformed vector field with an equal result

Wang et al. / Front Inform Technol Electron Eng 2017 18(8):1131-1141 1136

1

1

1

()
,

1 1
()

ˆ .

n n
mj m j

j ji i
j j

m
m

T a a

a

a

Varying the permutation can vary the set of co-

efficients binned to a bucket. Note that for simplicity,
our algorithm is analyzed on the condition that n is a
power of two.

3. Subsampled CFT: suppose a vector na
and a parameter B dividing n, one obtains

(/)ˆ ˆ .i i n By a (25)

Lemma 2 ŷ is the B-dimensional CFT of iy

/ 1

0
.n B

ii
a

Proof

1 1 / 1
(/) () /

(/)
0 0 0

ˆ
n B n B

ij n B i Bj m n B
i n B j Bj m

j t j
a a a

1 / 1 1
/ /

0 0 0

ˆ .
B n B B

imn B imn B
Bj m i

m j m
a y ya

4. Location loops
Definition 2 (Hash function) Given a parameter B
that divides n, we define a hash function h : [n] [B]
by h (i)=round(iB/n) and an ‘offset’ o : [n]
[n/(2B), n/(2B)] by o (i)= i h (i)(n/B), where [n]=
{0, 1, …, n 1}.

The location loops begin with a given parameter
d and then output a parameter J that controls to find
the coordinate of each large coefficient, and a set I [n]
of coordinates that contains each large coefficient.

5. Estimation loops: given a set I [n], we define
G as a window function: w(1/B, ,) and y=G (T , a);
thus, for i I, estimate â as ˆˆ ˆ ,

i i

i
i h oa z G

where (/) .ˆî i n Bz y This estimates each coordinate

with a good probability.
Fig. 2 shows an example of loops of the algo-

rithm when the input is sparse. Note that for simplicity,
the process is analyzed only in the scalar field. The
algorithm outputs T , a and obtains the spectrum
permutation by permuting the Clifford algebra sam-
ples in the time domain (Fig. 2a). The algorithm
computes signal f=G T , a in the time domain

(Fig. 2b). It can be seen that the spectrum of f is large
around the large coordinates. The algorithm computes

the subsampling of f̂ (Fig. 2c). Finally, the algo-
rithm outputs the coordinates of each large coefficient
(Fig. 2d). Note that there is a ‘hash collision’ when
two coordinates are too close in the permutation. It
results in missing the second coordinate from the left
one.

Fig. 2 Results of estimating large regions in the scalar
field: (a) permuted signal; (b) convolved signal; (c) actu-
ally computed samples; (d) estimated large regions

Wang et al. / Front Inform Technol Electron Eng 2017 18(8):1131-1141 1137

3.3 The proposed algorithm

We use Clifford algebra to divide a multivector
into a Clifford basis {1, e1, e2, e3, ...} and transform a
Clifford basis into complex signals, as in Eqs. (13)
and (16). Then we calculate the Fourier transform of
each complex signal separately. The Fourier trans-
form is usually dominated by a small number of
‘peaks’, meaning that it is sparse. The primary algo-
rithm works by first ‘locating’ a set of loops that

contain most of the peaks and then ‘estimating’ f̂ to
obtain ̂ .z Thus, we can calculate the k-sparse Fourier
transform as mentioned before. With the property of
linearity, we add up each transform to obtain the final
transform. The proposed method is provided in
Algorithm 1.

4 Experiment analysis

In this section, we compare the SFCFT algo-
rithm to several existing FFT implementations and
demonstrate how SFCFT provides a better computa-
tional performance when processing multivector
signals. We evaluate SFCFT performance in com-
parison to the fastest Fourier transform in the West
(FFTW) (Frigo and Johnson, 2005), sFFT1.0,
sFFT2.0 (Hassanieh et al., 2012c), and FCFT
(Schlemmer et al., 2005) in the scalar field. FFTW is
the fastest public implementation for computing FFT.
sFFT is the implementation for computing sFFT.
Compared with sFFT1.0, sFFT2.0 adds a heuristic to
improve the runtime. FCFT is also a fast algorithm for
computing CFT. We fix the signal size and signal
sparsity, and present the runtime and robustness of the
compared algorithms in Figs. 3–5. In higher-
dimensional fields, we implement the algorithms on
processing multispectral images and present the
runtime and spectrum map in Figs. 6 and 7. For ac-
curacy, each experiment is run more than 5000 times.
Each experiment is implemented on a 2.40 GHz
Core™ i5 processor running Ubuntu 15.01 with a
4 GB RAM.

4.1 Performance in the scalar field

4.1.1 Runtime vs. signal size

Here, the signal sparsity parameter is fixed to
k=50, and we compute the runtime of each algorithm

for five different signal sizes: 216, 217, 218, 219, and 220.
Table 1 summarizes the runtimes for processing var-
ious signal sizes using SFCFT, sFFT1.0, sFFT2.0,
FCFT, and FFTW. Fig. 3 shows comparisons among
these algorithms.

As expected, the runtime of each algorithm is
approximately linear (Fig. 3). However, Fig. 3
demonstrates that for signal size n>216, SFCFT is
faster than FFTW and FCFT when they have to

Algorithm 1 Sparse fast Clifford Fourier transform
Input: a multivector signal
Output: result of SFCFT
1. Extract the Clifford basis components of the multivector
2. Reconstruct the components to obtain vectors

0 123 3

1 23 3

2 31 3

3 12 3

[() ()]
[() ()]
[() ()]
[() ()]

F x F x i
F x F x i
F x F x i
F x F x i

1

2

3

1
e
e
e

// For each vector, it is appropriate to use sFFT,
// as it is sparse

3. Run a number of location loops, returning L sets of coor-
dinates I1, I2, …, IL

4. Randomly choose a invertible mod n and [n], and
permute input vector f with permutation T , : (T , f)j=f j+

5. Use a flat window function G, and compute the filtered and
permuted vector y=G (T , f)

6. With B dividing n, compute (/)ˆ ˆ j n Byz for j [B]

7. Keep only the d k coordinates of the maximum magnitude
in ẑ

8. Reverse steps 5–7 as a hash function h : [n] [B]
9. Count the number of occurrences of each coordinate j

found, i.e., sj=|{r|j Ir}|
10. Keep only the coordinates that occur in at least half of the

location loops:

I ={j I1 I2 … IL|sj>L/2}

11. Run a number of estimation loops on I , and return sets of

frequency coefficients ˆ r
jf

// These loops work similarly to location loops in
// steps 4–6 and the next step is: given a set of coordinates
// I, estimate ˆ

jf as () ()
ˆ ˆˆ /j

h j jjf z G

12. Take median real and imaginary components separately
and estimate each frequency coefficient ˆ

jf as

median{ˆ {1,2 }, }| ,r
j j r Lff

13. Based on the linearity of CFT, add up ˆ

jf to obtain the

output

Wang et al. / Front Inform Technol Electron Eng 2017 18(8):1131-1141 1138

recover exactly 50 nonzero coefficients. Thus, we can
see that the slopes of the lines for FFTW and FCFT
are larger than those for sFFT1.0, sFFT2.0, and
SFCFT. It means that FFTW and FCFT do not effi-
ciently process signals with large sizes. SFCFT is
slower than sFFT1.0 and sFFT2.0, because SFCFT
spends a certain amount of time for Clifford algebra
operations.

4.1.2 Runtime vs. sparsity (k)

In this experiment, the signal size is fixed to
n=220, and the runtime of each algorithm is calculated.
We choose sparsity parameter k from 50 to 500. The
experiment is repeated 50 times for each value of k.
Table 2 summarizes the runtimes for processing var-
ious signal sparsities using SFCFT, sFFT1.0, sFFT2.0,
FCFT, and FFTW. Fig. 4 illustrates the comparison
among these algorithms.

Fig. 4 shows that the runtime of each algorithm
is approximately linear. Note that FFTW and FCFT
are independent of sparsity k. It can be seen that when
a sparse approximation of the Fourier transform is
available, SFCFT, sFFT1.0, and sFFT2.0 greatly im-
prove the runtime performances and extend the range
of applications. Further, SFCFT, sFFT1.0, and
sFFT2.0 are faster than FFTW and FCFT when spar-
sity parameter k is small enough (Fig. 4).

4.1.3 Robustness to noise

Here, we choose signal size n=220 and sparsity
parameter k=50. For robustness, we add Gaussian
noise to signals and run each experiment with dif-
ferent signal-to-noise ratios (SNRs). SNR is changed
by changing the Gaussian noise. For each variance of
the Gaussian noise, we regenerate new cases of noises
and signals to run each experiment 5000 times. For
each run, we compute the error metric as the average
error between the best k-sparse approximation of x̂
and the output approximation x̂ which is restricted
to its k largest entries. This allows us to check whether
our SFCFT can improve its performance in terms of
runtime without reducing its robustness to noise.

The average errors per entry for SFCFT, sFFT1.0,
sFFT 2.0, FCFT, and FFTW are shown in Fig. 5. It
can be seen that the performances of all these algo-
rithms are stable under noise, and SFCFT is more
robust to noise than FFTW and FCFT.

4.2 Performance using 2D grayscale images

In this experiment, we apply our algorithm in 2D
grayscale image Fourier transform and compare it
with FFT and CFT. We choose a ‘Lena’ grayscale
image (512×512) to evaluate the performance. Re-
sults show that our SFCFT is the fastest, since SFCFT
computes data directly in the spatial domain first, and
then computes the effective coefficients.

SFCFT sFFT2.0

216 217 218 219 220

Signal size

R
un

tim
e

(m
s)

sFFT1.0 FFTW FCFT
6

4

2

0

Fig. 3 Runtimes of the compared algorithms for different
signal sizes

Table 1 Runtimes of each algorithm at different signal
sizes

Signal
size

Runtime (ms)
SFCFT sFFT2.0 sFFT1.0 FFTW FCFT

216 0.4031 0.3471 0.3615 0.2028 0.8804
217 0.6234 0.5218 0.5804 0.4405 1.0615
218 0.8098 0.7048 0.7595 1.1626 1.6095
219 1.5343 0.9578 1.2825 2.1543 2.8825
220 3.3743 1.8775 2.5088 4.5130 5.5088

Table 2 Runtimes of each algorithm with different
sparsity parameters

k
Runtime (ms)

SFCFT sFFT2.0 sFFT1.0 FFTW FCFT
50 3.3743 1.8875 2.1088 4.5130 5.7505
100 3.7175 2.9301 3.3965 4.5130 5.7505
200 4.6654 3.8355 4.2505 4.5130 5.7505
500 6.5449 5.3826 5.8371 4.5130 5.7505

SFCFT sFFT2.0 sFFT1.0 FFTW FCFT

50 100 200 500

Sparsity k
R

un
tim

e
(m

s)

8

6

4

2

0

Fig. 4 Runtimes of the compared algorithms for different
sparsity parameters

Wang et al. / Front Inform Technol Electron Eng 2017 18(8):1131-1141 1139

Further, Figs. 6b–6d show that SFCFT outputs a

clearer spectrum map than FFT and CFT. It means
that SFCFT presents more image data information. As
mentioned before, compared with the traditional
Fourier transform algorithm, our SFCFT algorithm
has lower error rates. SFCFT transforms the original
field into a field where nonzero Fourier coefficients
exist. This improves SFCFT’s robustness to noise.

4.3 Performance using color images

In this experiment, we use SFCFT in processing
higher-dimensional signals. We apply our algorithm
in color-image processing and compare the results
with those using FFT and CFT. We choose a ‘Lena’
RGB image (512×512) to evaluate the performance of
the algorithm. An RGB image has three color-

channels (i.e., red, green, and blue channels); thus,
FFT is calculated for each color-channel separately. It
means that three grayscale Fourier transforms are
calculated for each channel.

However, SFCFT can extract the multivectors
from the color-image data and transform them into
complex signals by implementing the Clifford algebra
and then calculating their Fourier transformations in a
numerical way. A 3D vector field is transformed into a
multivector field with only bivector and vector parts
that are unequal to zero, as bivector and vector form
three complex signals. Thus, we can see from Fig. 7
that the SFCFT algorithm is much faster than FFT and
CFT, and its frequency spectrum map is clearer. It
means that SFCFT presents more image data infor-
mation. SFCFT can discover both geometric and
spectral information of the multispectral image. The
wider the bands of the multispectral image, the more
outstanding the SFCFT.

5 Conclusions

In this paper, we have proposed a novel algo-
rithm called the ‘sparse fast Clifford Fourier trans-
form’, which combines the sparse Fourier transform
with CFT to process multivector signals. We have

Fig. 7 The original RGB image (a) and the frequency
spectrum maps with FFT (b), CFT (c), and SFCFT (d)
The runtimes of FFT, CFT, and SFCFT are 0.195382,
0.774559, and 0.016852 s, respectively. References to color
refer to the online version of this figure

Fig. 6 The original image (a) and the frequency spectrum
maps with FFT (b), CFT (c), and SFCFT (d)
The runtimes of FFT, CFT, and SFCFT are 0.029599,
0.054489, and 0.006536 s, respectively

SFCFT sFFT2.0 sFFT1.0 FFTW FCFT

Av
er

ag
e

er
ro

r p
er

 e
nt

ry

10 5

10 4

10 3

10 2

10 1

100

101

Signal-to-noise ratio (dB)
Fig. 5 Robustness to noise of the compared algorithms

Wang et al. / Front Inform Technol Electron Eng 2017 18(8):1131-1141 1140

discussed the application of SFCFT to the scalar field
and grayscale and color image processing. The results
demonstrate that SFCFT can effectively improve the
performance of multivector signal processing. Our
method is available in most vector fields; however, it
may not be sparse for a large number of vectors
concentrated in specific subareas. As next steps, we
will measure the uncertainties to indicate the im-
portance of matches, and offer some improvements to
the preliminary segmentation and transformation
computed on each segment.

References
Batard, T., Berthier, M., Saint-Jean, C., 2010. Clifford–Fourier

transform for color image processing. In: Bayro-
Corrochano, E., Scheuermann, G. (Eds.), Geometric Al-
gebra Computing. Springer London, London, UK,
p.135-162. https://doi.org/10.1007/978-1-84996-108-0_8

Bujack, R., Scheuermann, G., Hitzer, E., 2015. Demystifica-
tion of the geometric Fourier transforms and resulting
convolution theorems. Math. Meth. Appl. Sci., 39(7):
1877-1890. https://doi.org/10.1002/mma.3607

Cao, W.M., Feng, H., 2010. Geometric Algebra in Biomimetic
Pattern Recognition and Signal Processing. Science Press,
Beijing, China (in Chinese).

Cao, W.M., Liu, H., Xu, C., et al., 2013. 3D medical image
registration based on conformal geometric algebra. Sci.
China Inform. Sci., 43(2):254-274.
https://doi.org/10.1360/112012-592

Ebling, J., Scheuermann, G., 2003. Clifford convolution and
pattern matching on vector fields. IEEE Visualization,
p.193-200.
https://doi.org/10.1109/VISUAL.2003.1250372

Ebling, J., Scheuermann, G., 2005. Clifford Fourier transform
on vector fields. IEEE Trans. Visual. Comput. Graph.,
11(4):469-479. https://doi.org/10.1109/TVCG.2005.54

Evans, C.J., Sangwine, S.J., Ell, T.A., 2000. Colour-sensitive
edge detection using hypercomplex filters. 10th European
Signal Processing Conf., p.1-4.

Frigo, M., Johnson, S.G., 2005. The design and implementa-
tion of FFTW3. Proc. IEEE, 93(2):216-231.
https://doi.org/10.1109/JPROC.2004.840301

Gilbert, A., Indyk, P., 2010. Sparse recovery using sparse
matrices. Proc. IEEE, 98(6):937-947.
https://doi.org/10.1109/JPROC.2010.2045092

Gilbert, A.C., Indyk, P., Iwen, M., et al., 2014. Recent devel-
opments in the sparse Fourier transform: a compressed
Fourier transform for big data. IEEE Signal Process.
Mag., 31(5):91-100.
https://doi.org/10.1109/MSP.2014.2329131

Hassanieh, H., Adib, F., Katabi, D., et al., 2012a. Faster GPS
via the sparse Fourier transform. Proc. 18th Annual Int.
Conf. on Mobile Computing and Networking, p.353-364.
https://doi.org/10.1145/2348543.2348587

Hassanieh, H., Indyk, P., Katabi, D., et al., 2012b. Nearly
optimal sparse Fourier transform. Proc. 44th Annual
ACM Symp. on Theory of Computing, p.563-578.
https://doi.org/10.1145/2213977.2214029

Hassanieh, H., Indyk, P., Katabi, D., et al., 2012c. Simple and
practical algorithm for sparse Fourier transform. Proc.
23rd Annual ACM-SIAM Symp. on Discrete Algorithms,
p.1183-1194.
https://doi.org/10.1137/1.9781611973099.93

Hassanieh, H., Shi, L., Abari, O., et al., 2014. GHz-wide
sensing and decoding using the sparse Fourier transform.
Proc. IEEE INFOCOM, p.2256-2264.
https://doi.org/10.1109/INFOCOM.2014.6848169

Hestenes, D., 1999. New Foundations for Classical Mechanics.
Springer, New York, USA.

Hestenes, D., Sobczyk, G., 1984. Clifford Algebra to Geomet-
ric Calculus. Springer, New York, USA.

Hitzer, E., 2012. Introduction to Clifford’s geometric algebra.
SICE J. Contr. Meas. Syst. Integr., 4(1):1-11.

Hitzer, E., 2013. The Clifford Fourier transform in real Clifford
algebras. Int. Conf. on the Applications of Computer
Science and Mathematics in Architecture and Civil En-
gineering, p.227-240.

Hitzer, E., Mawardi, B., 2008. Clifford Fourier transform on
multivector fields and uncertainty principles for dimen-
sions n=2 (mod 4) and n=3 (mod 4). Adv. Appl. Clifford
Alg., 18(3-4):715-736.
https://doi.org/10.1007/s00006-008-0098-3

Hitzer, E., Sangwine, S.J., 2013. Quaternion and Clifford
Fourier transforms and wavelets. In: Hitzer, E., Stephen,
J., Sangwine, S.J. (Eds.), Trends in Mathematic. Springer
Basel, Basel, Switzerland.

 https://doi.org/10.1007/978-3-0348-0603-9
Hitzer, E., Helmstetter, J., Ab amowicz, R., 2013. Square roots

of –1 in real Clifford algebras. In: Hitzer, E., Stephen, J.,
Sangwine, S.J. (Eds.), Trends in Mathematic. Springer
Basel, Basel, Switzerland.
https://doi.org/10.1007/978-3-0348-0603-9_7

Iwen, M.A., 2010. Combinatorial sublinear-time Fourier al-
gorithms. Found. Comput. Math., 10(3):303-338.

 https://doi.org/10.1007/s10208-009-9057-1
Li, H.B., 2005. Conformal geometric algebra—a new frame-

work for computational geometry. J. Comput. Aid. Des.
Comput. Graph., 17(11):2383-2393.

Mishra, B., Wilson, P., Wilcock, R., 2015. A geometric algebra
co-processor for color edge detection. Electronics, 4(1):
94-117. https://doi.org/10.3390/electronics4010094

Mueen, A., Nath, S., Liu, J., 2010. Fast approximate correla-
tion for massive time-series data. Proc. ACM SIGMOD
Int. Conf. on Management of Data, p.171-182.
https://doi.org/10.1145/1807167.1807188

Porat, E., Strauss, M.J., 2012. Sublinear time, measurement-
optimal, sparse recovery for all. Proc. 23rd Annual
ACM-SIAM Symp. on Discrete Algorithms, p.1215-
1227. https://doi.org/10.1137/1.9781611973099.96

Wang et al. / Front Inform Technol Electron Eng 2017 18(8):1131-1141 1141

Reich, W., Scheuermann, G., 2010. Analyzing real vector
fields with Clifford convolution and Clifford–Fourier
transform. In: Bayro-Corrochano, E., Scheuermann, G.
(Eds.), Geometric Algebra Computing. Springer, London,
UK, p.121-133.
https://doi.org/10.1007/978-1-84996-108-0_7

Schlemmer, M., Hotz, I., Natarajan, V., et al., 2005. Fast
Clifford Fourier transformation for unstructured vector
field data. Proc. Int. Conf. on Numerical Grid Generation
in Computational Field Simulations, p.101-110.

Schumacher, J., Puschel, M., 2014. High-performance sparse
fast Fourier transforms. IEEE Workshop on Signal Pro-
cessing Systems, p.1-6.
https://doi.org/10.1109/SiPS.2014.6986055

Shi, L., Hassanieh, H., Davis, A., et al., 2014. Light field
reconstruction using sparsity in the continuous Fourier
domain. ACM Trans. Graph., 34(1), Article 12.
https://doi.org/10.1145/2682631

Smith, J.O., 2011. Spectral Audio Signal Processing. W3K
Publishing, London, UK.

Wang, R., Jing, L.B., Tao, L., et al., 2013. Digital watermark-
ing algorithm for 3D point cloud model based on Clifford
algebra. J. Shanghai Jiao Tong Univ., 47(12):1863-1869.

Wang, R., Zhang, X., Cao, W.M., 2015. Clifford fuzzy support
vector machines for classification. Adv. Appl. Clifford
Alg., 26(2):1-22.
https://doi.org/10.1007/s00006-015-0616-z

Xie, W., Cao, W.M., Meng, S., 2008. Coverage analysis for
sensor networks based on Clifford algebra. Sci. China
Inform. Sci., 51(5):460-475.

 https://doi.org/10.1007/s11432-008-0048-7
Xu, C., Liu, H., Ouyang, C.J., et al., 2011. Theory and appli-

cation of Clifford pseudo-differential operator on multi-
spectral image. Sci. Sin. Inform., 41(12):1423-1435.
https://doi.org/10.1360/zf2011-41-12-1423

