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Abstract:    There is a great thrust in industry toward the development of more feasible and viable tools for storing fast-growing 
volume, velocity, and diversity of data, termed ‘big data’. The structural shift of the storage mechanism from traditional data 
management systems to NoSQL technology is due to the intention of fulfilling big data storage requirements. However, the 
available big data storage technologies are inefficient to provide consistent, scalable, and available solutions for continuously 
growing heterogeneous data. Storage is the preliminary process of big data analytics for real-world applications such as scientific 
experiments, healthcare, social networks, and e-business. So far, Amazon, Google, and Apache are some of the industry standards 
in providing big data storage solutions, yet the literature does not report an in-depth survey of storage technologies available for 
big data, investigating the performance and magnitude gains of these technologies. The primary objective of this paper is to 
conduct a comprehensive investigation of state-of-the-art storage technologies available for big data. A well-defined taxonomy of 
big data storage technologies is presented to assist data analysts and researchers in understanding and selecting a storage mecha-
nism that better fits their needs. To evaluate the performance of different storage architectures, we compare and analyze the ex-
isting approaches using Brewer’s CAP theorem. The significance and applications of storage technologies and support to other 
categories are discussed. Several future research challenges are highlighted with the intention to expedite the deployment of a 
reliable and scalable storage system. 
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1  Introduction 
 

Nowadays, big data is the frontier topic for re-
searchers, as it refers to rapidly increasing amounts of 
data gathered from heterogeneous devices (Chen and 
Zhang, 2014). Sensor networks, scientific experi-
ments, websites, and many other applications produce 
data in various formats (Abouzeid et al., 2009). The 
tendency to shift from structured to unstructured data 
(Subramaniyaswamy et al., 2015) makes traditional 
relational databases unsuitable for storage. This in-
adequacy of relational databases motivates the de-

velopment of efficient distributed storage mecha-
nisms. Provision of highly scalable, reliable, and 
efficient storage for dynamically growing data is the 
main objective in deploying a tool for big data storage 
(Oliveira et al., 2012). Thus, innovative development 
of storage systems with improved access performance 
and fault tolerance is required. 

Big data has influenced research, management, 
and business perspectives and has captured the atten-
tion of data solution providers toward the deployment 
of satisfactory technologies for big data storage (Sakr 
et al., 2011). Relational databases have been very 
efficient for intensive amounts of data in terms of 
storage and retrieval processes for many decades 
(Vicknair et al., 2010). However, with the advent and 
accessibility of the Internet, technology to the public 
has turned the structure of data towards schema-less, 
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interconnected, and rapidly growing. Apart from that, 
the complexity of data generated by web resources 
does not allow the use of relational database tech-
nologies for analyzing image data (Xiao and Liu, 
2011). The exponential growth, lack of structure, and 
the variety in types bring data storage and analysis 
challenges for traditional data management systems 
(Deka, 2014). Transformation of big data structures to 
relational data models, strictly defined relational 
schemas, and complexity of procedures for simple 
tasks are the rigid features of relational databases 
(Hecht and Jablonski, 2011), which are not acceptable 
to big data. 

NoSQL technologies introduce flexible data 
models, horizontal scalability, and schema-less data 
models (Gorton and Klein, 2015). These databases 
aim to provide ease in scalability and management of 
large-volume data (Padhye and Tripathi, 2015). 
NoSQL databases offer a certain level of transaction 
handling so that they are adequate for social net-
working, e-mail, and other web-based applications. 
To improve the accessibility of data to its users, data 
are distributed and replicated in more than one site. 
Replication on the same site not only supports data 
recovery in case of any damage but also contributes in 
high availability if replicas are created on different 
geographic locations (Tanenbaum and van Steen, 
2007; Turk et al., 2014). Consistency is another as-
pect of distributed storage systems when data has 
multiple copies and keeping the data up-to-date on 
each site becomes more challenging. Brewer (2012) 
pointed out that preference to either availability or 
consistency is a common design objective for distrib-
uted databases whereas network partitions are rare.  

To date, NoSQL technologies have been widely 
deployed and reported as surveys in the literature, yet 
state of the art does not provide an in-depth investi-
gation into the features and performance of NoSQL 
technologies. For instance, Sakr et al. (2011) pre-
sented a survey highlighting features and challenges 
of a few NoSQL databases to deploy on the cloud. 
Deka (2014) surveyed 15 cloud-based NoSQL data-
bases to analyze read/write optimization, durability, 
and reliability. Han et al. (2011) described seven 
NoSQL databases under key-value, column-oriented, 
and document categories at an abstract level and 
classified them with the CAP theorem. Similarly, 
Chen et al. (2014) surveyed nine databases under the 

same three categories as described by Han et al. (2011) 
in the storage section of their survey. Another signif-
icant contribution in reviewing big data storage sys-
tems was made by Chen et al. (2014), who explained 
the issues related to massive storage, distributed 
storage, and big data storage. Their review also covers 
some well-known database technologies under 
key-value, column-oriented, and graph data models 
and categorizes them with Brewer’s CAP theorem. 
However, these three studies did not cover a large 
number of NoSQL databases in key-value, col-
umn-oriented, and document categories. Moreover, 
graph databases are not considered in these studies. In 
contrast, Vicknair et al. (2010) and Batra and Tyagi 
(2012) have studied Neo4j, which is a graph database, 
in comparison with the relational database to observe 
full-text character searches, security, data scalability, 
and other data provenance operations. Zhang and Xu 
(2013) highlighted the challenges (i.e., volume, vari-
ety, velocity, value, and complexity) related to storage 
of big data over distributed file systems in a different 
perspective. However, this survey did not aim to re-
port the performance of existing NoSQL databases for 
the described challenges. Many other comparative 
studies are present in the literature, analyzing the 
performance of some specific category or limited 
features of NoSQL databases. However, the state of 
the art does not report any detailed investigation of a 
vast set of performance metrics covering a large 
number of storage technologies for big data. 

Therefore, in this paper we highlight the features 
of distributed database technologies available for big 
data and present a more comprehensive review. We 
thoroughly study 26 NoSQL databases in this survey 
and investigate their performance. Moreover, we 
describe a number of recent widely spread storage 
technologies for big data under each data model such 
as key-value, column-oriented, document, and graph 
along with their licensing. In addition to that, we have 
strengthened our analysis with a discussion on the 
existing and recent trends in Brewer’s theorem. In 
accordance with Brewer’s recent explanation for 
distributed system characterization, we have high-
lighted each NoSQL database as either consistent or 
highly available. Therefore, the remarkable contribu-
tion of our work is to provide awareness for big data 
analysts to choose a storage option from a vast variety 
of databases with better tradeoff between consistency 
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and availability. Furthermore, this study helps re-
searchers understand and leverage an optimum stor-
age solution for their future research work.  

Following are the key objectives of this paper:  
(1) to investigate storage structures of a wide range of 
technologies in a big data environment; (2) to high-
light distinctive properties of each storage technology; 
(3) to develop the taxonomy and evaluate big data 
storage technologies according to the well-known 
Brewer theorem presented for distributed systems;  
(4) to identify the challenges and research directions 
for coping with big data storage in the future. 

The rest of the paper is organized as follows: 
Section 2 describes the evolution of big data storage 
technologies and their distinctive features over rela-
tional databases. Contemporary storage technologies 
for big data are also detailed in Section 2. Section 3 
presents the taxonomy and categorization based on 
adopted data model and licensing. Section 4 describes 
Brewer’s CAP theorem for distributed systems along 
with its new explanation. Storage technologies are 
investigated and analyzed to suggest a type based on 
Brewer’s categorization. Section 5 summarizes the 
discussion and highlights future research challenges. 
Section 6 concludes the discussion. 

 
 

2  Evolution of big data storage technologies 
 
In this section we discuss the technological shift 

from relational, well-structured databases to non- 
relational, schema-less storage technologies. The 
drive and challenges due to big data are summarized. 
Moreover, the prominent features of storage tech-
nologies specified for big data are highlighted. Most 
commonly used big data storage technologies are also 
elaborated upon. 

Over past few decades, relational databases have 
been used as well-structured data management tech-
nologies. They have been recommended for per-
forming data management operations on structured 
data (Deagustini et al., 2013). Datasets such as the 
Internet Movie Database (IMDB, 2015) and Movie- 
Lens (MovieLens, 2015) are available for being ma-
nipulated using relational databases. Big data and 
emerging technologies like cloud computing allow 
data to be captured from interactive and portable 
devices in various formats (Kaisler et al., 2013; Chen 

and Zhang, 2014). The data come with the new chal-
lenges of fast retrieval, real-time processing, and 
interpretation over a large volume (Kumar, 2014). 
Unfortunately, relational databases could not evolve 
as fast as big data. Moreover, the support to fault 
tolerance and complex data structures is not satis-
factory for heterogeneous data (Skoulis et al., 2015). 
Furthermore, the schema of relational databases does 
not support frequent changes (Neo4j, 2015). Google, 
Amazon, and Facebook are some of the well-known 
web data repositories. Their processing and dynamic 
scalability requirements are beyond the capabilities of 
relational databases (Pokorny, 2013). Thus, continu-
ously growing data that come with heterogeneous 
structures need a better solution. We summarize the 
comparison between relational databases and big data 
storage systems in Table 1 using a SWOT analysis. 

Big data is essential for enterprises to predict 
valuable business outcomes. To meet the challenges 
of big data, NoSQL (not only SQL) databases have 
emerged as enterprise solutions. NoSQL databases 
overcome the problems of relational databases and 
offer horizontally scalable, flexible, highly available, 
accessible, and relatively inexpensive storage solu-
tions (MacFadden, 2013). Thus, NoSQL databases 
have become the mostly adopted technologies for 
storing big data. Unlike relational databases, these 
technologies offer support to a large number of users 
interacting with big data simultaneously. NoSQL 
databases are great in achieving consistency, fault 
tolerance, availability, and support to query (Cattell, 
2010). They also guarantee some distinctive features 
over relational databases: scalability, availability, 
fault tolerance, consistency, and secondary indexing.  

2.1  Distinctions of big data storage technologies 

It is very common to consider scalability, relia-
bility, and availability as the design goals for a big 
data storage technology. However, it is also observed 
that consistency and availability influence each other 
in a distributed system, and one of them is compro-
mised (Diack et al., 2013). According to the nature of 
big data, a single server is not a wise decision for 
storage, and it is better to configure a cluster of mul-
tiple hardware elements as the distributed storage 
system. To discuss storage technologies for big data, 
the description of features for distributed NoSQL 
systems provided in the literature is also significant.  
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For this reason, we explain these features in distinc-
tion. Out of them, consistency, availability, and parti-
tion resilience are further considered to examine the 
applicability of Brewer’s theorem for current big data 
storage technologies in Section 4. 

Scalability refers to support to growing volumes 
of data in such a manner that a significant increase or 
optimization in storage resources is possible (Putnik 
et al., 2013). The paradigm shift from batch pro-
cessing to streaming data processing shows that the 
data volume is continuously increasing. Referring to 
our previous work (Gani et al., 2015), the volume for 
future big data will be at zettabyte scale and the 
storage requirements will increase with such volume. 
As far as the availability of a system is concerned, it 
suggests quick access to data storage resources 
(Bohlouli et al., 2013). For this purpose, data are 
replicated among different servers, which may be 
placed on the same location or distant locations to 
make the data highly available to users at their nearby 
sites, thus increasing big data retrieval efficiency 
(Azeem and Khan, 2012; Wang et al., 2015). In other 
words, minimum downtime and promptness of a 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

system for ad hoc access requests define its availa-
bility (Oracle, 2015a). 

Node failure is very common in distributed 
storage systems. To make it fault-tolerant, multiple 
copies of data are created and placed on the same 
node and/or different nodes of the storage cluster. 
Replication not only makes the system highly avail-
able but it is also useful for fault tolerance (Hilker, 
2012). Furthermore, NoSQL databases offer very 
flexible schema and data relationships and are not as 
complex as relational databases (Kumar, 2014). 
Nowadays, data not only comprise tuples; documents 
and objects are also part of big data. Therefore, a 
predefined schema cannot deal with varying data 
structures (Cattell, 2010). 

Regardless of the distribution, storage systems 
for big data ensure the data be complete and correct. 
Changes made by users are committed under defined 
rules (Oracle, 2015a). Eventual consistency has be-
come a widely adopted mechanism to implement 
consistency in NoSQL databases. Changes are prop-
agated eventually, and the system becomes consistent 
after propagating the changes. However, instantane-

Table 1  SWOT analysis of relational databases and big data storage systems 
 Traditional database systems Big data storage systems 

Strengths 

Support highly structured data stored and processed 
over an auxiliary server 

Vertical scalability with extendible processing on a 
server 

Specialized data manipulation languages 
Specialized schema 

Support heterogeneous structured data 
Horizontal scalability with extendible  

commodity servers 
Support data-intensive applications 
Simultaneous accessibility 
Reliability and high availability 
High fault tolerance 
Eventual consistency 

Weaknesses 

Performance bottleneck 
Processing delays 
Increased deadlocks with growth of data 
Limited storage and processing capacity 
Co-relations which hinder scalability 
Expensive join operations for  

multidimensional data 

No compliance with ACID due to  
scalability and performance 

Opportunities 
Support complex queries 
Atomicity in complex transactions 
Built-in deployment support 

Improved query response times 
Simplicity in storage structures 
Data-intensive 

Threats 

Extensive volume of data for storage with  
dynamic growth 

Frequently changing schema 
Complex data structures 
More concurrent access needs 
Frequent I/O needs 
Real-time processing needs 
Consistency of a large number of storage servers  

Large number of small files 
Deployment may need community support 
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ous propagation leads to the development of a 
strongly consistent system, yet it results in frequent 
access locks. In addition to fault tolerance and con-
sistency, indexing is worthwhile for big data storage. 
Indexing is a method that improves the performance 
of data retrieval. In relational databases, primary keys 
are sufficient to perform search operations (Oracle 
Secondary, 2015). However, with the advent of big 
data, which comes with new challenges of heteroge-
neity in data structures, primary key indexing is not 
the solution. Secondary indexes are mostly created 
automatically by the system, and keys other than the 
primary key are produced. 

2.2  Contemporary big data storage technologies 

Research outcomes of exploring storage tech-
nologies for big data advocate different aspects of 
designing storage mechanisms. These reliable and 
highly available mechanisms contribute to improving 
data access performance. Improved data access per-
formance drives better quality of data analysis. These 
technologies offer scalable storage solutions for 
growing big data with enhanced data structures and 
support fault tolerance. This section provides a brief 
explanation of storage systems for big data in each 
category. In accomplishing the design goals, current 
storage technologies are described to review their 
feasibility for big data. Their storage structure and 
outstanding features to support scalable resource 
provisioning for big data are also described here. 

The Google File System (GFS) is a proprietary 
system developed by Google Inc. (Ghemawat et al., 
2003) to manage data-intensive applications in a dis-
tributed manner. It is designed to satisfy the storage 
needs for steadily growing data as a significant ob-
jective along with other features provided by con-
temporary techniques. Current and future estimated 
workloads are analyzed to develop such a distributed 
file system. To deal with the commodity component 
failure problem, GFS facilitates continuous monitor-
ing and ensures detecting errors, tolerates component 
faults, and recovers them automatically. GFS adopts a 
clustered approach that divides data chunks into 
64-KB blocks and stores a 32-bit checksum for each 
block. As shown in Fig. 1, these checksums are stored 
on servers as part of metadata to ensure integrity. 
Moreover, the chunks are replicated to avoid chunk 
server faults and for availability and reliability (Dean 

and Ghemawat, 2008). Such systems are supposed to 
handle large-volume data where many kilo-byte size 
files become a challenge for them. However, GFS 
guarantees support to manage these small files along 
with appending new data concurrently for large files 
even when they are read/write-intensive. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Hadoop Distributed File System (HDFS) is 

developed as an inspiration of GFS. HDFS is a dis-
tributed, scalable storage system designed as a core of 
Apache Hadoop to run on inexpensive commodity 
hardware, initially designed as infrastructure of 
Apache Nutch. HDFS is a suitable solution for data- 
intensive applications, typically at gigabyte to tera-
byte scales, which require high throughput. HDFS 
provides quick fault detection and automatic recovery, 
as it comprises a large number of components. 
However, there is a probability of block failure and 
nonfunctioning (Borthakur, 2008). Block replication 
is offered to avoid node failure and unavailability or 
loss of data (Shvachko, 2010). Replication ensures 
not only the availability but also the reliability of the 
system and it is automatically handled by HDFS 
NameNode. Rather than just being a storage layer of 
Hadoop, HDFS is a standalone distributed file system 
that helps improve the throughput of the system. 
HDFS has a namespace-separated architecture. 
Metadata is stored on the master node, which is called 
NameNode, whereas block-split files are stored on a 
number of DataNodes. NameNode performs mapping 
of data on DataNodes and namespace operations such 
as open, close, and rename file. DataNodes fulfill 
read–write requests and create block and replicas. The 
architecture of HDFS is shown in Fig. 2. 

Fig. 1  Google File System (GFS) architecture (Ghemawat 
et al., 2003) 
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BigTable is another product developed by 

Google Inc. (Chang et al., 2008) to provide a flexible 
and high-performance storage for large-scale struc-
tured data spread over a large number of commodity 
servers. BigTable is a highly adaptable, reliable, and 
applicable storage system to manage petabyte scale 
data on thousands of machines. BigTable has proven 
to be a high-performance and available data storage. 
Therefore, many Google applications and projects 
that might have throughput or latency requirements 
are using BigTable with different workloads. More-
over, BigTable provides dynamic control over data 
placement, representation, indexing, and clustering.  

HBase is a column-oriented data store developed 
by Apache (Apache Software Foundation, 2015). 
HBase implements a BigTable storage system and is 
designed to handle storage needs of big data in the 
Apache project (George, 2011). HBase provides a 
scalable, distributed, fault-tolerant, and random 
read–write oriented access to big data on top of Ha-
doop and HDFS (Fig. 3) (Taylor, 2010). HBase uses 
the underlying HDFS from Hadoop to store table data. 
Its master component assigns regions to Region-
Servers and keeps track of these servers. Region-
Servers receive region information and manage 
read/write requests from clients on different regions 
(Khetrapal and Ganesh, 2006). As far as concurrency 
is concerned, HBase has a remarkable support to 
read-intensive transactions (Ruflin et al., 2011). 
HBase is more concerned about distribution and uses 
a clustered approach for data management; that is 
why it is a potential solution for a remarkably large 
number of rows of data.  

Hypertable also implements BigTable (Hy-
pertable, 2015). Hypertable is a distributed database 

that provides a very good support to consistency of 
stored data (Han et al., 2011). Hypertable is designed 
to run and is compatible with many distributed file 
systems such as GFS, HDFS, and CloudStore. Hy-
pertable stores data in the form of tables and splits the 
tables to achieve distribution and scalability. Fig. 3 
describes the relationship between the components of 
the Hypertable system. HyperSpace works as a lock 
manager and ensures high availability and con-
sistency through distributed configuration of replicas 
by using a distributed consensus protocol. There is no 
effect on client data transfer if the master becomes 
unresponsive for a short period. This is preferable to 
have more Masters to achieve high availability re-
quirements (Khetrapal and Ganesh, 2006). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
MongoDB is an open-source NoSQL database 

designed by Mongo, Inc. as a highly available, scal-
able, and fault-tolerant document-oriented solution 
(MongoDB, 2015). MongoDB derives the character-
istics of MySQl with the JSON data model (Ruflin et 
al., 2011). Therefore, MongoDB has the same hori-
zontal scalability, ease of agile development with 
dynamic schema support to all kinds of document 
data, and efficiency in manageability as MySQL of-
fers. Furthermore, indexing, dynamic and ad hoc 
queries, aggregation, and dynamic updates are some 
of the vast MySQL facilities that are adopted by 
MongoDB with slight modification. MongoDB stores 
documents as data in binary representation called 
BSON, which makes it easy to map data from appli-
cations to databases (Kristina and Michael, 2010). 
Moreover, robustness and availability of data are 
achieved with a replica set, and multiple replicas are 
available when the primary server is not responding. 
This database provides support for storing and  

Fig. 3  Two implementations of BigTable (George, 2011; 
MongoDB, 2015) 

Fig. 2  Hadoop Distributed File System (HDFS) archi- 
tecture (Borthakur, 2008) 
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combining multiple structure data, whereas the in-
dexing is still feasible (Banker, 2011). 

Terrastore is another document-based open- 
source distributed storage system, developed by Ter-
racotta, Inc. (Terrastore, 2015). Terrastore offers 
support with high scalability as well as consistency 
and dynamic clustering during execution. Terrastore 
is built on top of the in-memory storage, Terracotta. 
To provide scalability, Terrastore offers not only the 
deployment of a single cluster but also support to 
multiple clusters. Furthermore, load balancing for 
data storage over nodes is automatically performed 
when nodes connect or disconnect from the clusters 
(Bossa, 2009). Terrastore is optimized for consistency, 
as it performs consistent hashing for partitioning and 
does not create replicas. However, data are redistrib-
uted when nodes join or leave the cluster. Like Dy-
namoDB, Voldemort, and Cassandra, the Terrastore 
node nearby a client forwards the client requests to 
the serving node and it is not necessary for the client 
to have this routing knowledge. Although the built-in 
support to data distribution and partitioning makes 
Terrastore better than Memcached, Terrastore has 
more distribution overhead than Redis, which lowers 
its performance (Alex and Ana-Maria, 2009). Con-
sequently, Terrastore is not considered a good ap-
proach for large amount of document data (Bossa, 
2009). 

HyperGraphDB is an implementation of the 
hypergraph model to develop an open-source graph 
database for artificial intelligence and web semantic 
projects (Iordanov, 2010). This graph database uses 
Berkeley DB for storage and not only provides stor-
age for arbitrary data but also supports data mapping 
between host language and storage. In addition, an 
essential customizable indexing feature is provided 
by HyperGraphDB so that efficient data retrieval and 
graph traversal are achieved. HyperGraphDB uses a 
key-value mechanism to store graph information such 
as nodes and edges as a key (Dominguez-Sal et al., 
2010). In contrast to HBase, HyperTable, Redis, and 
other master–slave storage systems and access ar-
chitectures, HyperGraphDB implements a peer-to- 
peer data distribution mechanism. Each peer works 
independently, and updates are performed asynchro-
nously and eventually (HyperGraphDB, 2010). 

InfiniteGraph is a distributed object database 
designed for graph data that offers high scalability as 

well as complex search and traversing efficiency 
(InfiniteGraph, 2014). InfiniteGraph is a graph data-
base where data and computation load are distributed 
among storage locations and runtime configurable 
zones. To achieve scalability, InfiniteGraph imple-
ments a model-based technique. Moreover, an In-
finiteGraph database facilitates the creation of a cus-
tom model for frequently accessed elements so that 
query performance is improved. These frequently 
accessed elements can further be separated from other 
elements to handle locks. Along with custom models, 
the indexing framework of InfiniteGraph also con-
tributes to better query performance (Objectivity, Inc., 
2012). InfiniteGraph database users know that their 
growing graph data are stored with some schema and 
they can easily perform normalization and other 
presentation operations on their data (Fulton, 2011). 
Furthermore, because of deploying its model on cloud, 
development and testing of databases over Infinite-
Graph is without any charge. 

Rocket U2 is a document-oriented, proprietary 
database management suite that offers two associated 
platforms of multivalue databases: UniData and 
UniVerse (RocketSoftware, 2015). Rocket U2 ensures 
availability of the system after any disconnection, 
which makes it reliable and robust to immediately 
recover from any downtime (RocketSoftware, 2014a). 
According to a case study (RocketSoftware, 2014b), 
Rocket U2 provides a scalable and flexible system 
where changes can be made anytime according to the 
requirements. This flexibility allows easy updating in 
applications, and the database does not need to be 
rebuilt when changes occur. Multivalue products are 
integrated with many pieces of codes, which reduces 
the developers’ effort of coding. Furthermore, Rocket 
U2 databases sustain their performance in terms of 
response time even when the size of data grows. 
However, support to data partitioning is not available 
with Rocket U2. 

Scalaris is a scalable, distributed, and highly 
available key-value store that is designed to fulfill the 
intensive read/write requirements of enterprises 
(Schütt et al., 2008). For concurrent access and to 
support intensive transaction, it is common to face 
node failures. However, Scalaris manages to obtain 
consistency for critical write operations by imple-
menting a distributed transaction protocol and a 
structured overlay network on Erlang. The structured 
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overlay network is implemented as the first layer of 
Scalaris architecture and provides support to a range 
of queries. The architecture of Scalaris also applies 
replication to make the system highly available and 
fault-tolerant. Regardless of the challenges of write- 
intensive transactions, the Paxos consensus protocol 
helps ensure consistency with reduced overhead 
(Scalaris, 2015). 

To achieve high performance, custom data 
management, and scalability for applications, Berke-
ley DB provides an embedded support to key-value 
databases via libraries. Although Berkeley DB offers 
an open-source license, this license is constrained to 
the development of open-source applications. For 
third-party distribution, Berkeley DB offers com-
mercial licensing facility. Berkeley DB was initially 
licensed under Sleepycat Software but later owned by 
Oracle. The products developed using Berkeley DB 
have simple data access and management procedures. 
Furthermore, due to customized configuration with 
no overhead, these products fulfill varying develop-
ment needs such as local or distributed storage and 
storage capacity configuration, and many other op-
tions are available when Berkeley DB is used (Oracle, 
2015b). As far as other features related to data dis-
tribution are concerned, Berkeley DB ensures high 
throughput for data access rate, non-blocking con-
sistency, reliability, fault tolerance, and availability. 
Like relational databases, Berkeley DB has a good 
support to data access efficiency, transactions, and 
recovery mechanism (Seltzer and Bostic, 2015). 
However, provision to these relational databases-like 
features is packaged in libraries, and developers are 
given the configuration choice according to their 
requirements. Regardless of the features provided by 
Berkeley DB, it is noticeable that Berkeley DB does 
not support synchronization with other databases. 
Meanwhile, data partitioning is not facilitated by 
Berkeley DB (Oracle, 2015c). 

DynamoDB is a widely used, fully distributed, 
schema-free NoSQL database tool by Amazon 
(Sivasubramanian, 2012). DynamoDB is predomi-
nantly used for storing unstructured, variable, and 
scalable data (Baron and Kotecha, 2013). DynamoDB 
offers infinite scaling capacity for data storage and 
access rate. It is applicable when frequent updates on 
distributed sites, efficient indexing, and adaptive 
scalability are required. Availability and durability 

can be achieved through automatic replication over 
multiple zones in a region (Niranjanamurthy et al., 
2014). Regardless of the request size, DynamoDB 
ensures stable performance and visible resource uti-
lization. Administrative tasks, such as hardware pro-
visioning, setup and configuration, replication, soft-
ware patching, and scaling, can be offloaded to Am-
azon Web Service (AWS). DynamoDB is an effi-
ciently managed database; that is why it is suitable for 
scalable applications with exponentially growing data 
(Vyas and Kuppusamy, 2014). 

Qualcomm has developed a document-oriented 
database named Qizx for large-volume, high- 
performance, and transaction-intensive XML data 
(Qualcomm, 2014a). Qizx is well suited for enter-
prises with fast data access and retrieval requirements. 
For this purpose, Qizx has automatic full-text and 
customizable indexing capability, which makes it 
efficient in query responses. In addition, support to 
terabyte-scale data and other features related to dis-
tribution are taken into consideration while designing 
this database. Qizx’s ‘shared-nothing’ clustering ar-
chitecture allows each node or host in cluster to fully 
replicate the database to achieve high availability 
(Qualcomm, 2014b). However, these share-nothing 
hosts serve client read requests, and one dedicated 
server is responsible for update operations. Conse-
quently, a consistent, fault-tolerant, and up-to-date 
replicating database system is achieved. 

An industry-leading, broadly used, schema-less 
graph database that is effectively replacing relational 
databases is Neo4j (Neo4j, 2015). By analyzing 
complex data relationships with Neo4j, enterprises 
gain value benefits. In regard to scalability (Montag, 
2013), high transaction load, concurrency, and per-
formance for read request workloads, Neo4j not only 
competes other graph databases but also affects im-
provements on its older versions (Zicari, 2015). 
Support to write-intensive transactions without 
blocking is achieved with the help of buffering. In 
spite of its benefits, Neo4j is time consuming in set-
ting up a ready-for-production and reliable database. 

For real-time web applications, RethinkDB is 
the first open-source document database that supports 
complex queries in an efficient way (RethinkDB, 
2015). RethinkDB reverses traditional storage sys-
tems and implements append-only nested data storage 
structure, which makes it more consistent, robust, and 
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easily replicable (Walsh et al., 2009). RethinkDB 
offers easy scalability and faster response to client’s 
real-time queries. Although RethinkDB also uses the 
JSON data model, query operation processing is 
slower than that of MongoDB. However, RethinkDB 
has a real-time architecture and, due to its append- 
only storage structure, RethinkDB incurs less scaling 
cost as compared to MongoDB. Furthermore, ad-
vanced query language and administration are better 
than with MongoDB. Despite the benefits obtained by 
RethinkDB, RethinkDB does not perform very well 
for compute- and write-intensive applications. 

Aerospike is the first flash-optimized, open- 
source, key-value data store for real-time data, which 
offers scalability and reliability with very low cost 
(Aerospike, 2015). Aerospike has a ‘shared-nothing’ 
architecture, which supports petabyte scale volume of 
data with reliability and linear scalability (Aerospike, 
2012). Similar to Cassandra, a column-oriented da-
tabase, Aerospike is designed to provide scalability, 
replication, automatic node partition recovery, and 
high availability. However, Aerospike is better than 
Cassandra in terms of read and write workload, con-
sistency with jitters, and cost for read and write  
operations. 

The first multi-model, open-source, and highly 
scalable database for document data with an extended, 
transparently managed graph layer to provide con-
nections between records as relationships is OrientDB 
(OrientDB, 2015). The embedding graph layer makes 
OrientDB not only persistent and compact but also 
fast in data traversal and managing data relationships 
without increasing the cost. The multi-model plat-
form of OrientDB makes it categorizable as a  
document-oriented graph database. Regardless of 
volume of data, OrientDB has a distinct speed in data 
storage as well as read and write transactions. To 
ensure performance and scalability, clustering and 
replication over heterogeneous servers is a significant 
benefit achieved by OrientDB (SD Times Newswire, 
2013). OrientDB has many features similar to 
Couchbase document store, which is derived from 
CouchDB. Both have a schema-free model, support to 
secondary indexes, sharding for data partitioning, and 
the master–master replication model. However, Ori-
entDB has additional features such as a multi-model 
approach to support all operating systems, which are 
not provided by Couchbase. 

AllegroGraph is a graph database efficiently 
designed for RDF semantic web applications. Alle-
groGraph ensures persistency, memory utilization 
performance, and high scalability over millions of 
quads (AllegroGraph, 2015). Furthermore, automatic 
compute and storage resources management in Alle-
groGraph are the key performance fundamentals. 
AllegroGraph offers not only an enterprise and 
commercial version but also an open-source product. 
However, the open-source version of AllegroGraph is 
limited in scalability. Hybrid data representation, 
which covers both relational model and triple store, 
optimizes the range query performance in Allegro-
Graph (Aasman, 2008). 

Redis is an alternative open-source cache and 
key-value store for big data, which provides an effi-
cient data structure for indexing to speed up query 
operations and response (Carlson, 2013). Somehow, 
the functionality of Redis is similar to that of Scalaris. 
Redis has considerable support to replication in a 
master–slave environment. However, providing sup-
port to multiple data structure makes it a predominant 
choice for frequent data access situations. Linux is the 
recommended operating system for its deployment, as 
Redis is developed and tested on the Linux platform 
(Excoffier and Lischer, 2010). In the case of more 
scalability requirements when systems become out of 
RAM, Aerospike in-memory store is preferable to 
Redis. Redis is much closer to MemcacheDB in fast 
data access, as the whole data resides in the memory. 
However, Redis has some other powerful features 
such as built-in persistency and support to more 
datatypes. Unlike MemcacheDB, Redis is persistent 
as a real database and data will not be lost with restart. 
Furthermore, support to more data types is a unique 
property of Redis. Thus, Redis becomes a best choice 
when high scalability, heterogeneity in platform, 
servers and application, and in-memory data are  
required.  

Voldemort is a general-purpose, distributed data 
storage solution for large-scale data (Sumbaly et al., 
2012; Voldemort, 2015). The routing module of 
Voldemort is responsible for performing data clus-
tering and replication and follows the same procedure 
as DynamoDB. Voldemort provides eventual con-
sistency, as read/write operations can be performed on 
any node and for a very short period as happened 
when the view of data is inconsistent (Bunch et al., 
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2010). Like MemcacheDB, Voldemort also achieves 
data persistence using Berkeley DB, and the replica-
tion factor for distributed hash table entries can be set 
by the developer. 

KAI is a distributed, key-value-based data store 
that is developed as an implementation of Amazon’s 
Dynamo. KAI provides high scalability and availa-
bility to websites with support to a variety of data. 
The name KAI is derived to elaborate its good or-
ganization of clusters where data are stored and pro-
cessed in parallel in a distributed, replicated manner 
(SourceForge, 2015). Furthermore, load balancing, 
configurable scalability of nodes, fast configuration, 
and reliability through replication are the basic per-
formance gains of KAI. Although KAI offers even-
tual consistency, the implementation of the quorum 
protocol helps achieve strong consistency. 

Cassandra is a decentralized and highly available 
key-value storage system for structured data that 
comprises a large number of underlying data centers 
(Hewitt, 2010; Lakshman and Malik, 2010). It serves 
to provide scalability, instance storage, and improved 
performance for frequent read/write operation re-
quests. Data consistency is achieved in Cassandra 
through periodic updates on replicating sites (Baron 
and Kotecha, 2013). In contrast to HBase, Cassandra 
provides significant support to write-intensive trans-
actions (Ruflin et al., 2011). Most significantly, 
Cassandra persistently deals with component failures 
in such large-scale systems and achieves overall re-
liability and scalability. Schema can be built any time, 
as Cassandra provides flexibility. Clustering, parti-
tioning, and replication while taking care of fault 
tolerance, reduced latency, and scalability are the 
prominent features of Cassandra (Lakshman and 
Malik, 2010; Abramova and Bernardino, 2013). It is a 
reasonable choice for continuously growing systems 
such as Facebook. Facebook has deployed Cassandra, 
where scalability linearly depends upon the number 
of users and a write-intense system is needed 
(Armbrust et al., 2009). 

SimpleDB is an open-source, document-oriented 
database that is available as an Amazon service 
(Sciore, 2007). Without database administration load, 
SimpleDB ensures high availability and durability of 
data with automatic geographic replication. Fur-
thermore, the data model is flexible, and automatic 
indexing is performed on the data. Thus, automatic 

provisioning of database administration makes ap-
plication development simple via SimpleDB. Despite 
the ease of data management provided by SimpleDB, 
scalability is limited to 10 GB (Habeeb, 2010). 

MemcacheDB is an open-source key-value store 
(Tudorica and Bucur, 2011; MemcacheDB, 2015) 
developed for fast and reliable storage and access of 
objects and data. It implements Berkeley DB to de-
velop a general-purpose database, and many features 
of Berkeley DB such as transaction and replication 
are derived. MemcacheDB is a persistent database for 
dynamic, database-driven web applications (Coburn 
et al., 2011). Memcached users can access Mem-
cacheDB through any API, as it uses the Memcached 
protocol. When implementing Memcached API, a 
cache system for fast access from memory, it becomes 
easy to provide data persistency as caching is already 
performed by Memcached (Helmke, 2012). It applies 
a master–slave approach to achieve data persistency 
where the data read request can be fulfilled by any site 
but write operation is performed only at the master 
node. It operates with a single master and multiple 
replicating nodes. However, it is flexible to allow any 
node to become a replicating node, but it reveals a 
security challenge (Bunch et al., 2010). 

CouchDB is an open-source, distributed, scala-
ble document database developed for performing data 
operations and administration on the web (Anderson 
et al., 2010; Apache, 2015). In case of intensive ac-
cess requests, CouchDB adopts a sophisticated con-
currency mechanism that does not let the system fail. 
However, such intensive workload cause delays in 
overall responses. CouchDB has support to dynamic 
data structure, which makes it possible to define 
schema as required. Regardless of wide adaptability 
of CouchDB in web application development, it is 
suggested to check its feasibility for developer re-
quirements (Wenk and Slater, 2014). Like MongoDB, 
CouchDB also implements the JSON data model, 
which helps CouchDB support semistructured data. 
Furthermore, CouchDB allows the storage of any 
kind of data as documents (Ruflin et al. 2011). 

Riak is a key-value database that provides high 
availability and less cost scalability (Sheehy, 2010). 
Riak provides simpler data models and data conflict 
resolution. Riak is an advanced form of key-value 
databases but somehow it is categorized as a  
document-based database. Although Riak has more 
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functionalities than other key-value databases, it lacks 
the features of document-based databases (Cattell, 
2010). Therefore, it is better to categorize Riak as a 
key-value database. As compared to Redis, Riak has a 
less complex key construct, which is a feature of 
document-based databases (Ruflin et al., 2011). This 
less complexity to key construct makes the data 
model of Riak flexible, and changes in the data model 
do not affect the indexes. 

From an analytics perspective, tensor-based 
models are widely adopted to represent arbitrary re-
lationships in data entities and to traverse graphs 
(Cichocki, 2014). Big data has high dimensionality 
rather than two-tuple relationships and brings the 
challenge of analyzing such multi-relational datasets. 
Therefore, tensor-based models are being used for big 
data representation. SciDB (Cudré-Mauroux et al., 
2009), an implementation of the tensor model, is 
designed to manage multidimensional data as an array 
database, which creates chunks of arrays for parallel 
processing. SciDB supports many data manipulation 
operations such as linear algebra operators for chunk- 
based N-dimensional arrays. Attributes and dimen-
sions of data are flexible and can be added or removed 
any time. SciDB is an append-only array database for 
scientific data, and the changes or corrections made in 
data are stored as new versions (Stonebraker et al., 
2013).  

In this section, we have provided a comprehen-
sive account of current storage technologies for big 
data. Table 2 provides a brief summary of above 
discussed storage technologies available for big data. 
It highlights the design objectives and characteristics 
of these technologies. It comprises four vertical divi-
sions, providing the name of the storage technology, 
the vendors, and the design goals. Development of 
distributed storage mechanism, which partitions the 
data in a NoSQL database format, provides scalability 
and efficient and fault-tolerant support to read/write 
operations on that data.  

Table 2 provides a summary of big data storage 
technologies. It can be seen that most of the storage 
technologies are designed to ensure scalability and 
consistency in general. However, these storage sys-
tems support specific features such as intensive 
workload, high availability, data access performance, 
and complex query operations. We provide a com-
parative table identifying the application areas of each 
storage technology in Table 3. The following section 

highlights these features to categorize the above dis-
cussed storage systems. Taxonomy based on the 
adopted data model of big data storage technologies is 
presented and detailed in the next section. 

 
 

3  Taxonomy of big data storage technologies 
 
Big data storage technologies described in the 

previous section are categorized according to their 
data model and licensing in this section. There are 
four types of data model, key-value, column-oriented, 
document-oriented, and graph, whereas licensing has 
three categories, open source, proprietary, and com-
mercial. We classify the storage technologies and 
develop taxonomy based on their data models and 
licensing. Additionally, we elaborate tensor decom-
positions and networks as representation and analysis 
models for multi-relational big data stored using 
graph-based technologies. Scalability and fast data 
retrieval are the significant expectations of a storage 
system in this regard.  

However, categories of data models offer dif-
ferent levels of heterogeneity. The following is a de-
scription of the data models, and the example cases 
for each data model are presented in Fig. 4. 

Key-value: Key-value databases are developed 
for big data storage and store not only structured but 
especially unstructured data in the form of a key and 
the corresponding value of each data record (Pokorny, 
2013). These databases have suitable storage struc-
ture for continuously growing, inconsistent values of 
big data for which faster response of queries is re-
quired. Key-value databases provide support to 
large-volume data storage and concurrent query op-
erations. Unlike block storage systems, key-value 
data structure stores data in small objects instead of 
blocks and they are easily configurable (DeCandia et 
al., 2007). In key-value databases, values in records 
may differ or have different representations. In this 
way, this structure offers less memory consumption 
and the flexibility of adding more records easily. The 
appropriate scenario for a key-value database is when 
searching for more than one feature from records is 
needed. Most common applications of key-value 
storage are session information management for 
online games, online shopping, and other web appli-
cations where an enormous number of small-sized 
records are to be managed. 
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Table 2  Summary of big data storage technologies 
Technology Reference Vendor Design goals 

BigTable Chang et al. (2008) Google To bring about distribution for highly scalable, structured data 
HBase HBase Apache To provide consistent, random, and real-time access to scalable 

BigTables with read/write requests 
Hypertable Hypertable (2015) Zvents To provide parallel, high-performance, scalable databases for large size 

data; to support better querying performance for large data size 
MongoDB MongoDB (2015) MongoDB, Inc. To provide relational data model facilities for document-based dy-

namic schemas; to support quick and consistent access to data from 
different applications across multiple interfaces 

Terrastore 
(in-memory) 

Terrastore (2015) Terracotta, Inc. To achieve consistency for document data via distribution 

Hyper- 
GraphDB 

Iordanov (2010) Kobrix Software, 
Inc. 

To design a persistent memory model for artificial intelligence and 
semantic web projects; to provide both relational and object- 
oriented data management 

InfiniteGraph InfiniteGraph 
(2014) 

Objectivity, Inc. To provide persistently distributed data storage with easier traversal  
of complex relationships; to support complex queries over data to 
obtain higher values 

Rocket U2 RocketSoftware 
(2015) 

Rocket Software To offer a scalable and stable performance for growing data volume;  
to provide cost-effective and highly available solutions for contin-
uously evolving requirements 

Scalaris Sch et al. (2008) Zuse Institute  
Berlin and onScale  
solutions 

To achieve consistency for read/write intensive transactions; to build 
scalable online services 

BerkeleyDB Oracle (2015b) Sleepycat, Oracle To provide configurable, embedded, key-value databases with high 
performance; to support transparently flexible and scalable data 
management over applications 

DynamoDB Sivasubramanian 
(2012) 

Amazon To support distributed storage of scalable size of data; to improve 
search query performance 

Qizx Qualcomm (2014a) Qualcomm Tech-
nologies, Inc. 

To provide an enterprise-ready solution for XML data manipulation;  
to support text-intensive, large-volume data applications for fast data 
retrieval 

Neo4j Zicari (2015) Neo Technology To provide relational-like graph databases for intensively relating data; 
to support data relationship manipulation and decision making 

RethinkDB RethinkDB (2015) RethinkDB To support easy development of real-time web applications; to provide 
append only document-based storage struture 

Aerospike 
(in-memory) 

Aerospike (2015) Aerospike, Inc. To develop a scalable and flexible platform for web scale applications; 
to support reliability and consistency as traditional databases 

OrientDB OrientDB (2015) Orient  
Technologies 

To provide multi-model, scalable storage to achieve both graph- and 
document-oriented model features 

AllegroGraph AllegroGraph 
(2015) 

Franz, Inc. To provide a memory- and disk-efficient scalable solution for graphs 

Redis 
(in-memory) 

Carlson (2013) Salvatore  
Sanfilippo 

To efficiently support query operations and replication in a master– 
slave environment with emphasized update performance 

Voldemort Sumbaly et al. 
(2012) and 
Voldemort (2015) 

LinkedIn To provide distributed and consistent storage to large-scale read-only 
data; to support distribution transparency, failure transparency, and 
versioning to ensure integrity 

KAI SourceForge  
(2015) 

Slashdot Media To provide a highly scalable and robust solution by implementing 
Amazon’s Dynamo 

Cassandra Hewitt (2010) and 
Lakshman and 
Malik (2010) 

Apache To provide distributed, highly available, fault-tolerant storage for big 
data; to improve access performance using replication and row dis-
tribution of data 

SimpleDB Sciore (2007) Amazon To provide automatic geographic replication for data availability and 
durability 

MemcacheDB MemcacheDB 
(2015) 

Danga Interactive To provide fast and reliable storage and retrieval 

CouchDB Apache (2015) Apache To provide a dynamic and self-contained schema for web documents 
Riak Sheehy (2010) Basho Technologies To provide high availability to applications and platforms 
SciDB Cudré-Mauroux  

et al. (2009) 
Paradigm4 To support storage and manipulation of N-dimensional data 
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Table 3  Comparison and application areas of storage technologies 

Technology In- 
memory 

On- 
disk Persistence Intensive 

read/write 
Data 

partitioning 
Shared 
nothing Scalability Applications 

Scalaris (Sch et al., 
2008) 

√ × × √ √ √ √ –Scalable online services (i.e., 
eBay, Amazon) 

–Always live databases 
–Frequent failure nodes 

Aerospike (Aerospike, 
2015) 

√ × × √ √ √ √ –Web scale applications 
–SSD drives 

Redis (Carlson, 2013) √ × √ √ √ √ × –Session-based cache 
–Structured strings 
–LRU cache 
–For small data (Jing et al., 

2011) 
Voldemort (Sumbaly  

et al., 2012) 
× √ √ √ √ × √ –Read-only data (Sumbaly  

et al., 2012) 
–LinkedIn (Deka, 2014) 

KAI (SourceForge, 
2015) 

× √ √ – √ – × –Web repository 
–Social network 
–Online stores 

MemcacheDB  √ √ √ √ √ – √ –Object storage 
–Read-only text data 

Riak (Sheehy, 2010) × √ √ × × √ √ –Heterogeneous data 
–Always on requirements 
–Github, Comcast 

BerkeleyDB (Oracle, 
2015c) 

√ √ √ × × × √ –Embeddable database 
applications 

–MySQL, MemcacheDB 
DynamoDB 

(Sivasubrama- 
nian, 2012) 

× √ √ √ √ √ √ –Unstructured variable data 
–Always on requirements 
–SSDs, e-commerce 

HBase (Apache 
Software Foundation, 
2015) 

× √ √ × √ × √ –Latency-tolerant  
applications 

–Versioned data 
–Sparse data 
–LinkedIn 

Hypertable (Hy-
pertable, 2015) 

√ √ √ √ √ √ √ –Both structured and 
unstructured data 

–Real-time applications 
Cassandra (Hewitt, 

2010; Lakshman  
and Malik, 2010) 

√ × × √ √ √ √ –Online interactive systems 
–Facebook (Armbrust et al., 

2009), Twitter (Deka, 2014) 
BigTable (Chang  

et al., 2008) 
√ √ √ √ √ √ √ –Structured large-scale data 

at Google 
–Many Google products 
–Web page storage 

MongoDB 
(MongoDB, 2015) 

√ √ × √ √ √ √ –Real-time applications 
–E-commerce 
–Google, Facebook 

Terrastore (Terrastore, 
2015) 

√ √ √ × √ × √ –Structured data 
–No downtime requirements 

RethinkDB 
(RethinkDB, 2015) 

× √ √ √ √ √ √ –Real-time web/mobile  
applications 

–Collaborative applications 
–Twitter, Github, multi- 

player game 
SimpleDB  

(Sciore, 2007) 
× × √ × × × √ –Complex queries 

–Logs and online games 
CouchDB (Apache, 

2015) 
× √ √ √ √ √ √ –Versioned data 

–Web application 
–Social data 

(To be continued) 
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Table 3   

Technology In- 
memory 

On- 
disk Persistence Intensive 

read/write 
Data 

partitioning 
Shared 
nothing Scalability Applications 

OrientDB (OrientDB, 
2015) 

√ × × √ √ √ √ –Embedded databases, 
complex data,  
relationships 

Rocket U2 
(RocketSoftware, 
2015) 

× √ √ √ × × √ –Business information 
management 

–Mexico’s emergency 
response systems 

Qizx (Qualcomm, 
2014a) 

× – √ √ × √ √ –For high-speed  
queries 

–Scientific data 
HyperGraphDB 

(Iordanov, 2010) 
√ √ × – √ – √ –Pattern mining 

–Bioinformatics and 
semantic web 

Neo4j (Zicari, 2015) √ √ √ √ × √ √ –Real-time recom-
mendations 

–Social network 
–eBay, Cisco 

AllegroGraph 
(AllegroGraph, 2015) 

× √ √ × × √ × –Semantic web 
–Reasoning and  

ontology modeling 
–Complex data 

InfiniteGraph 
(InfiniteGraph, 2014) 

– – × √ √ √ √ –Real-time search 
performance 

–Social media,  
location-based  
networking 
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Fig. 4  Examples of data models: (a) key-value; (b) column-oriented; (c) document-oriented; (d) graph 
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Column-oriented: This category of NoSQL da-
tabases is suitable for vertically partitioned, contig-
uously stored, and compressed storage systems. 
Column-oriented databases store columns of data 
separately, unlike traditional storage where data are 
stored in the form of complete records. Data reads and 
retrieval of attributes in such systems is quite fast and 
comparatively less expensive, as only the relevant 
column is accessed and concurrent process execution 
is performed for each column (Abadi et al., 2009; Hu 
and Dessloch, 2014). Column-oriented databases are 
highly scalable and eventually consistent. They pro-
vide support to applications for reliable and highly 
available storage (Dharavath and Kumar, 2015). The 
application areas of column-oriented databases are 
customer record analysis, data warehousing, patient 
data management, library systems, and wherever 
analysis is required to aggregate similar data items. 
Furthermore, with column-oriented structure it is 
convenient to add new features in all rows. For ex-
ample, an online shopping website can apply aggre-
gation on mostly viewed or ordered items in a specific 
time span, the trendy regions for online shopping, and 
the success rate of online trading in a year. 

Document-oriented: Document-oriented data 
model is similar to key-value structure and stores data 
in the form of key and value as reference to the 
document. However, document databases support 
more complex queries and hierarchical relationships. 
This data model usually implements the JSON format 
and offers very flexible schema (Kristina and Michael, 
2010). Although the storage architecture is schema- 
less for structured data, indexes are well defined in 
document-oriented databases. SimpleDB is the only 
database that does not offer explicitly defined indexes 
(Cattell, 2010). Document-oriented databases extract 
metadata to be used for further optimization and store 
it as documents. Use cases for document-oriented 
databases include user profiles on social networks, 
analysis of websites, and complex transactional data 
applications. On Facebook, as an example, users may 
provide less or extensive information on their profile. 
Each user profile will be stored as a document. The 
performance of heuristic schema offered by a  
document-oriented data storage model depends upon 
the user inputs and nature of queries. 

Graph: Graph databases are the best choice to 
store data along with relationships. Graph databases 

offer persistent storage of objects and relationships 
and support simple and understandable queries with 
their own syntax (Zicari, 2015). Modern enterprises 
are expected to implement graph databases for their 
complex business processes and interconnected data, 
as this relational data structure offers easy data tra-
versal (Neo4j, 2015). Highly frequent trading systems 
and recommendation systems prefer graph databases 
to achieve low latency. For instance, getting recom-
mendations from customer feedback data on a com-
merce website requires self-joined, multilevel queries 
for traditional databases, which becomes a very 
complex operation. In contrast, for a graph database, 
this data manipulation is quite simple as two lines of 
code without affecting the structure of data. 

Tensor-based models: An interesting representa-
tion of graph-oriented big data is tensor-based models, 
which are widely adopted models to represent arbi-
trary relationships in data entities and to traverse 
graphs (Cichocki, 2014). Dealing with high-order 
relationships of big data is significant in many areas 
of information processing such as topic modeling, 
social network analysis, and recommender systems. 
Graph-oriented systems are well suited for storing 
hetero-dimensional data. However, for analytical 
purposes, tensors are gaining attention to build 
open-source libraries. Lorica (2015) stated that it is 
useful to capture and analyze the complex relation-
ships in data to extract more accurate information. 
Although there exist some efficient methods to ana-
lyze hidden variables and highly relational neural 
networks, the performance of tensors is beyond 
comparison. Scalability, accuracy, and timeliness are 
the reasons to prefer tensors over other methods. 

Based on the specifications of each data model 
as described above, we present their relationship with 
volume and varying structure of data in Fig. 5. 
Key-value databases are more inclined to store each 
record regardless of considering completeness of data 
and assign a key identifier to record. However, graph 
databases are useful in storing well-structured, per-
sistent objects with complex relationships. On the 
other hand, scalability, clustering, and data partition-
ing among nodes, as well as adding or removing 
nodes’ runtime, are difficult in graph databases. Data 
models that support volume and scalability also have 
to support inconsistencies and allow storage of  
unstructured data over schema-less architecture.  
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In contrast, the graph data model offers support to 
well-structured and complex data, but the scalability 
is not as much as what other data models provide. 

Besides data models of NoSQL databases de-
signed as big data storage systems, we consider the 
type of licensing to categorize the storage mecha-
nisms. Description of licensing is provided as the 
following: 

Open source: An open-source system is freely 
available for both academia and business so that it can 
be used and integrated with their own piece of code or 
application (Milne and Witten, 2013). These systems 
are cost effective in terms of development and pro-
vide better quality and flexible access to even small 
businesses (Nagy et al., 2010). 

Proprietary: Unlike open-source systems, pro-
prietary systems may be owned after paying a rea-
sonable fee for their use. These systems are given 
with some legal terms and conditions to take care and 
only for own use and not to be modified or redistrib-
uted (Nagy et al., 2010). The source codes of such 
systems are usually not given to the buyer. 

Commercial: These systems are developed for 
sale. A trial part may be available free of cost but to 
obtain complete privilege for research and develop-
ment; a user or enterprise must purchase it. 

Fig. 6 elaborates the categorization of big data 
storage technologies that are considered and further 
analyzed based on Brewer’s theorem in a later section. 
The figure lists the storage technologies available for 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

big data and presents the data model implemented by 
these technologies. It also shows the classification 
based on types of licensing, which are open source, 
proprietary, and commercial. Key-value systems are 
developed for big data storage on NoSQL databases 
with different storage structures. Applications where 
whole records need to be accessed and analyzed are 
referred to as key-value storage structure. For in-
stance, DynamoDB (Sivasubramanian, 2012) adopts 
key-value structure of data storage and gains better 
performance for storing and accessing unstructured, 
inconsistent data. Stable performance and visible 
resource utilization are ensured even when the que-
rying workload varies. Scalaris (Schütt et al., 2008), 
Berkeley DB (Oracle, 2015b), Aerospike (Aerospike, 
2015), Redis (Carlson, 2013), Voldemort (Voldemort, 
2015), KAI (SourceForge, 2015), and MemcacheDB 
(MemcacheDB, 2015) are also key-value storage 
systems as detailed in the previous section. 

In column-oriented storage systems, data are 
vertically partitioned and stored as separate columns. 
Each vertical partition may have different or the same 
organization of data. In Fig. 6, HBase (Apache 
Software Foundation, 2015) is shown as a column- 
oriented data store, which ensures a consistent view 
of the data every time for read/write requests. HBase 
is an implementation of BigTable (Chang et al., 2008) 
and developed as a NoSQL database to provide 
scalable storage and fault-tolerant access to its data. It 
is deployed on top of Hadoop and HDFS and  

Fig. 5  Data models of NoSQL databases 

Key-Value

Column-oriented

Document

Graph

• Fast Data Retrieval
• Schema-less
• Unstructured Data
• Easy Scalability
• Maximum support to Data Volume

• Fast Data Retrieval
• Structured and Unstructured Data
• Easy Scalability
• More Support to Data Volume

• Weak Query Performance
• Support to Incomplete Data
• Query is not Standard

• Whole Graph Traversal
• Connectedness
• Data and Relationships
• Clustering is not Easy
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facilitates efficient random read/write operations. Be-
sides, HBase and BigTable, Hypertable (HyperTable, 
2015) and Cassandra (Hewitt, 2010; Lakshman and 
Malik, 2010) also belong to the column-oriented data 
model category. MongoDB (MongoDB, 2015), Ter-
rastore (Terrastore, 2015), Rocket U2 (RocketSoft-
ware, 2015), Qizx (Qualcomm, 2014b), RethinkDB 
(RethinkDB, 2015), OrientDB (OrientDB, 2015), 
SimpleDB (Sciore, 2007), CouchDB (Apache, 2015), 
and Riak (Sheehy, 2010) are document-oriented da-
tabases. HyperGraphDB (Iordanov, 2010), Infinite-
Graph (InfiniteGraph, 2014), Neo4j (Neo4j, 2015), 
and AllegroGraph (AllegroGraph, 2015) are graph 
databases. We extend graph-oriented data models and 
elaborate tensors as analytical models for processing 
and extracting information from high-dimensional 
big data. Tensors provide scalability when imple-
mented on distributed systems. Kim and Candan 
(2014a) have used SciDB (Cudré-Mauroux et al., 
2009) to implement tensor decomposition on disk 
rather than in memory, which minimizes I/O and 
processing costs. This tensor decomposition project is 
named TensorDB (Kim and Candan, 2014b) with 
support of both static and dynamic decompositions. 
Tensors have also been used in Neo4j. 

From the licensing perspective, Fig. 6 shows that 
most of the available big data storage technologies are 
open-source and freely available for either a storage 
solution or a research platform. BigTable is a propri-
etary storage solution by Google to be built over 
many commodity servers. Although it is not an 
open-source project, its implementations, Hypertable 
and HBase, are available to research and consumer 
community without any cost. DynamoDB is a com-
mercial storage technology. All storage systems 

 
 
 
 
 
 
 
 
 
 
 
 
 

discussed in this paper, except BigTable and Dyna-
moDB, are open-source technologies. 

Table 4 explains the taxonomy and describes the 
types of licensing and data models of each storage 
system. It also highlights the important features of 
these storage technologies. The technologies are dis-
tributed and are scalable, and they assure fault toler-
ance and efficient response to read/write operations 
on the data stored there. Furthermore, the table  
illustrates the applications of big data storage  
technologies. 

This section has provided an illustration of the 
taxonomy of big data storage technologies based on 
the data model and licensing. We have categorized 
these technologies according to the data model into 
four NoSQL systems: key-value, column-oriented, 
document-oriented, and graph databases. The details 
and applications of each data model are provided. 
According to the licensing method, storage technol-
ogies are categorized as open source, proprietary, and 
commercial. Fig. 6 shows that most of the storage 
systems are open-source. However, BigTable (Chang 
et al., 2008), InfiniteGraph, and Rocket U2 (Rocket- 
Software, 2015) are proprietary systems, whereas 
DynamoDB, Qizx (Qualcomm, 2014a), and Alle-
groGraph are commercial systems. Berkeley DB 
(Oracle, 2015b) is the only key-value database that is 
available in both open-source and commercial li-
censes. In a later section, we analyze NoSQL distrib-
uted storage systems according to Brewer’s CAP 
theorem. We discuss the background and importance 
of Brewer’s theorem in analyzing distributed systems. 
We also list the methods adopted by these storage 
systems to implement consistency, replication, and 
partition of data. 

Fig. 6  Taxonomy of big data storage technologies 
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Table 4  Taxonomy of big data storage technologies 
Data 

model License Technology Data store/ 
database* Features Applications 

K
ey

-v
al

ue
 

O
pe

n 
so

ur
ce

 

Scalaris 
(Sch et al., 2008) St 

Strongly consistent 
Scalable and highly available with load bal-

ancing and fault tolerance 
Very little maintenance overhead 
Self-managing 

Read/write intensive platforms 

Aerospike 
(Aerospike, 2015) St Highly scalable, consistent, and reliable 

User profiles, dynamic web 
portals, fraud detection 

SSD cache 

Redis 
(Carlson, 2013) St 

Automatic partitioning 
Efficient data read/write access 
Fault-tolerant and responsive if replica is 

down 

Structured strings 
LRU cache 

Voldemort 
(Sumbaly et al., 

2012; Voldemort, 
2015) 

St 

Automatic data partitioning and replication 
Transparent fault recovery 
High read/write availability and horizontal 

scalability 

Large-scale read-only data 

KAI 
(SourceForge, 

2015) 
St Highly fault-tolerant with low latency 

Scalable with configurable nodes 
Web repository 
Social network 

MemcacheDB 
(MemcacheDB, 

2015) 
St 

Efficient data storage and retrieval 
Good performance for read/write 
High storage availability 

Small chunks of arbitrary data 
(object storage) 

Riak (Sheehy, 
2010) B 

Fault-tolerant and highly available 
Data conflict resolution 
Support to configure commodity hardware 

Unstructured data 

O
pe

n 
so

ur
ce

/ 
co

m
m

er
ci

al
 

BerkeleyDB 
(Oracle, 2015b) B 

Scalability and high performance 
Configurable products 
Support to complex data management  

procedures 

Embeddable database  
applications 

C
om

m
er

ci
al

 

DynamoDB 
(Sivasubramanian, 

2012) 
B High write availability 

Automatic replication and fault tolerance Unstructured variable data 

C
ol

um
n-

or
ie

nt
ed

 

O
pe

n 
so

ur
ce

 

HBase St 
Concurrent mode-failure exception  

hindering read/write performance 
Auto-split and redistribution 

Structured and semi-structured 
data, random read/write ac-
cess, social data 

Hypertable 
(Hypertable, 2015) B 

Highly available and fast random read/write 
Compatible with many Distributed File  

Systems 

Both structured and unstruc-
tured data 

Cassandra 
(Hewitt, 2010; 
Lakshman and 
Malik, 2010) 

B 
Easy and cost saving 
High write throughput, no read  

compromises (locks) 

Structured and semi-structured 
data, time series data, IOT 

Digg, Rackspace, Raddit, 
Cloudkick, Twitter, social 
data 

Pr
op

rie
ta

ry
 

BigTable (Chang 
et al., 2008) St 

Easy data compression process 
Fast query response 
Allowing an infinite number of  

columns in a table 
Automatic less reconfiguration to  

scale the system 

Structured large-scale data at 
Google 

* St=data store, B=database                                                                                                                                                        (To be continued) 
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Table 4   
Data 

model License Technology Data store/ 
database* Features Applications 

D
oc

um
en

t-o
rie

nt
ed

 

O
pe

n 
so

ur
ce

 

MongoDB 
(MongoDB, 2015) B 

Easy scalability, fault-tolerance, and high 
availability 

Built-in data encryption file system 
Support to complex schemas 
Flexibility in data models 

Unstructured, dynamic 
schemas with varying and 
unknown attributes, so-
cial data 

Terrastore 
(Terrastore, 2015) St 

Persistent in-memory document storage 
Automatic data redistribution and load  

balancing 
Dynamic cluster configuration 

Structured big data 

RethinkDB 
(RethinkDB, 2015) B 

Easy scalability 
Robustness and more consistency 
Fast real-time query response 

Real-time web/mobile  
applications 

SimpleDB 
(Sciore, 2007) St High availability  

Fast query retrieval Complex queries 

CouchDB 
(Apache, 2015) B 

Easy use 
Fault-tolerance 
Concurrency for request workload 

Web application develop-
ment, social data 

OrientDB (graph 
database) 

(OrientDB, 2015) 
B 

High-speed storage 
Low-cot scalability 
Heterogeneity of replicating servers 
Schema-less 

Embedded databases, com-
plex data relationships 

Pr
op

rie
ta

ry
 

Rocket U2 
(RocketSoftware, 

2015) 
B 

Dynamic support to applications 
Highly efficient, scalable, and reliable for 

growing data 

Business information  
management 

C
om

m
er

ci
al

 

Qizx 
(Qualcomm, 

2014a) 
B 

Highly scalable, available, and consistent 
Fast and efficient query execution 
Support to customized indexing 

Semi-structured XML data 

G
ra

ph
 O

pe
n 

so
ur

ce
 

HyperGraphDB 
(Iordanov, 2010) B 

Flexible and dynamic schema 
Non-blocking concurrency 
Efficient data modeling and knowledge  

representation 

Arbitrary graph data, artifi-
cial intelligence and se-
mantic web projects 

Neo4j 
(Zicari, 2015) B 

Highly scalable and robust 
Efficient concurrent write transactions  

without locking 
Fast for write scaling transaction loads 

Intensive data relationship 
and intensive write 
transaction applications, 
social and geospatial data 

AllegroGraph 
(AllegroGraph, 

2015) 
B 

High storage throughput 
Highly scalable, available, and persistent 
Fast query execution and high data load 

speed 

Semantic web reasoning 
and ontology modeling, 
complex data 

C
om

m
er

ci
al

 

InfiniteGraph 
(InfiniteGraph, 

2014) 
B 

Rapid development of data-intensive 
graph-based applications 

Easy traversal of complex graph elements 
Processing load distribution 
Availability of data filtering techniques to 

improve query performance 
Easy to use 

Growing graph data 

SciDB  
(Cudré-Mauroux et al., 2009) B 

Data update lineage with named versions  
Data partitioning changing with time 
Less data loading cost 
Built-in preprocessing and cleansing  

functionality 
Optimized storage and CPU performance 

Geospatial, scientific data, 
astronomy 

* St=data store, B=database 
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4  Analysis of big data storage technologies 
 
In this section we analyze the discussed big data 

storage technologies. Brewer’s CAP theorem, which 
gives widely used criteria to classify distributed sys-
tems, states that it is difficult for NoSQL technologies 
to fulfill ACID or BASE criteria as consistency, 
availability, and partition resilience are the consid-
erable factors in designing these large-scale, distrib-
uted storage systems. ACID provides a set of char-
acteristics for each transaction performed on rela-
tional database management systems and declares 
that these transactions are fully consistent (strong 
consistency), whereas BASE allows systems to have a 
weaker level of consistency. However, for distributed 
systems, this is not always possible to be consistent. 
Sometimes, these systems compromise between con-
sistency and availability. Thus, the CAP theorem 
becomes useful for categorizing modern NoSQL 
storage technologies. According to new explanation 
of Brewer’s CAP theorem, a distributed system may 
be either consistent or highly available. Therefore, we 
explore the characteristics of existing NoSQL tech-
nologies and analyze them with Brewer’s proposed 
criteria. Later, we deeply investigate each storage 
technology to suggest the category of Brewer’s the-
orem where a technology lies. Furthermore, we 
summarize the mechanisms adopted by modern big 
data storage technologies to achieve consistency, data 
partitioning, replication, and indexing. 

4.1  Brewer’s CAP theorem 

We describe the significance of Brewer’s CAP 
theorem in the evaluation of distributed systems. For 
this purpose, we first describe other criteria and evo-
lution of the CAP theorem. With the emergence of 
distributed storage systems, the need to reconsider 
ACID (Gray, 1981) constraints (atomicity, con-
sistency, isolation, and durability) became urging, as 
it does not ensure availability. Although availability 
may not be a requirement for some network services, 
it is most likely to be considerable. Many researchers 
have presented their viewpoints to explain the basic 
requirements of a distributed storage system for big 
data. Fox et al. (1997), for example, identified them 
as incremental scalability, provisioning of overflow 
growth, high availability, and cost effectiveness for 
scalable network services. The authors showed that it 

is very difficult for networked clusters to fulfill all 
these requirements and presented the BASE (basic 
availability, soft state, and eventual consistency) 
model (Fox et al., 1997). This model can be prefera-
bly adopted when ACID is not applicable, and it 
provides a better support to faults and partial failures 
in clusters at very little cost.  

When discussing consistency and availability, it 
seems that a strongly consistent system prohibits 
more than one copy of data; thus, the concept of high 
availability is compromised, and it discourages rep-
lication to increase users’ access to the required ser-
vice. Fox and Brewer (1999) introduced a tradeoff to 
design distributed systems and presented the CAP 
principle (consistency, availability, and partition re-
silience). Before explaining the CAP principle and its 
tradeoff to categorize distributed systems, we provide 
below a brief definition of the three basic concepts 
considered related to this principle, namely con-
sistency, availability, and partition resilience. Con-
sistency refers to having the same up-to-date data at 
each node (Oracle, 2015a), availability suggests quick 
accessibility to data storage resources with minimum 
downtime (Oracle, 2015a), and partition resilience is 
related to fault tolerance in case of unresponsive 
nodes or a sub-network (Bohlouli et al., 2013).  

Initially the authors claimed that a simultaneous 
provision of these three features as explained above is 
not possible for a distributed system and two out of 
three were supposed to be guaranteed (Fox and 
Brewer, 1999). For instance, there is a possibility that 
a distributed system compromises partition resilience 
and satisfies the other two. Existence of any two of 
these three features can present a distributed system. 
This principle invited criticism from experts, and, 
later, Brewer clarified the misleading concept of 
‘choosing two out of three’ and explained that most of 
the time there is a choice between consistency and 
availability depending upon the user access pattern or 
nature of data (Brewer, 2012). As far as partition 
resilience is concerned, Brewer showed that it is rare 
to face the partitioning problem in a system and that a 
lot of options exist for partition handling and recovery. 
This explanation is depicted in Fig. 7. Thus, the the-
orem suggests a design of the distributed system be 
leaning towards either consistency or availability 
where partition resilience cannot be forfeited. 
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4.2  Analysis of big data storage technologies based 
on Brewer’s CAP theorem 

We have provided a brief illustration of Brewer’s 
CAP theorem in Section 4.1. According to the new 
explanation (Brewer, 2012), it is clear that a storage 
system will be of either CP type or AP type. Here we 
present a systematic explanation of each storage sys-
tem available for big data and categorize the system 
into CP and AP types since it is declared in the CAP 
theorem that it is impossible for a database to have 
both ACID consistency and data availability. Conse-
quently, we focus on two pair of combinations from 
this theorem, which are consistency–partition resili-
ence and availability–partition resilience, in our dis-
cussion. Table 5 elaborates the features of big data 
storage technologies. These features are further con-
sidered in analyzing and categorizing these storage 
systems according to Brewer’s theorem. Table 5 also 
describes the methods for implementing consistency, 
replication, data partitioning, and indexing for these 
technologies. Furthermore, Brewer’s category is 
suggested in Table 5 for each storage system.  

Based on the investigation of contemporary big 
data storage technologies presented in Table 5, we 
suggest the type for each technology as depicted by 
Brewer. We identify and prove that each technology 
falls into either the CP or AP category. In Fig. 8 we 
present the categorization based on the two pairs 
given by Brewer for modern distributed systems, to 
show their success and capability towards Brewer’s 
theorem. Intersection of two features presents the 
criteria, e.g., consistency–partition resilience (CP) 
and availability–partition resilience (AP). As Fig. 8 
describes, recent distributed systems for storing big 
data satisfy either pair. Consistency and partition 

resilience are presented in Fig. 8 as CP, and the in-
tersection shows the list of technologies that possess 
these two features from each data model. The pair 
availability–partition resilience is also shown in Fig. 8, 
and at the intersection lie Cassandra, Voldemort, and 
DynamoDB. We previously explained that, according 
to Brewer, it is not possible for a system to fully 
support consistency and availability at the same time. 
Therefore, for a distributed system it is important  
to satisfy either choice, but partition resilience is 
mandatory. 

The trivial case for the systems having CP is that 
these systems become unresponsive to requests until 
the system recovers from partitioning and data on all 
sites are up to date. This phenomenon results in a 
locking state for the system, and the system may be-
come unavailable for this time span. CP-type systems 
aim to ensure strong consistency regardless of the 
data access performance, and usually they believe in 
performing synchronous write operations. Scalaris, 
Redis, MemcacheDB, and Berkeley DB are CP-type 
key-value databases. 

Scalaris (Schütt et al., 2008) implements a 
non-blocking Paxos commit protocol to ensure strong 
consistency. While the master–slave approach of 
MemcacheDB supports implementation of con-
sistency and clients can access any replica on slaves 
for read operations, write operations are performed 
only at the master node.  

From the list of column-oriented databases, 
HBase, Hypertable, and BigTable are of CP type. For 
up-to-date and consistent data provisioning on all 
replicas, HBase allows synchronous writes to all rep-
licas, which may increase latency or unavailability, 
but these are not the design goals for HBase (Wang et 
al., 2014). HBase is designed to provide read/write 
consistency and holds clients’ requests until the up-
dating operation is complete. There is a write-ahead- 
log (WAL) in hard drive where write operations are 
updated first. Later, in-memory data are updated 
across all replicating nodes so that improved write 
throughput can be achieved. Similarly, BigTable im-
plements transactional consistency on rows using 
Chubby service (Burrows, 2006) and the Paxos algo-
rithm (Chandra et al., 2007) for persistent replicas and 
consistency lock management. Client acquires the 
lock and maintains the session during which it per-
forms atomic reads and writes. 

Fig. 7  Brewer’s CAP theorem (Brewer, 2012) 
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Table 5  Analysis of big data storage technologies 
Data  

model License Technology Data store/ 
database1 Features Query  

language 
Consis- 
tency2 

Repli- 
cation3 

Partition- 
ing4 

Index- 
ing5 

Brewer’s  
category6 

K
ey

-v
al

ue
-b

as
ed

 

O
pe

n 
so

ur
ce

 

Scalaris 
(Sch et al., 

2008) 
St 

Strongly consistent 
Scalable and highly 

available with load 
balancing and fault 
tolerance  

Very little mainte-
nance overhead 

Self-managing 

Custom 
 

E 
 

Symm, 
 

K 
 

Pr 
 

CP 
 

Aerospike 
(Aerospike, 

2015) 
St Highly scalable, con-

sistent and reliable AQL St Syn,  
Asyn Sh Sc AP 

Redis 
(Carlson,  

2013) 
St 

Automatic partitioning 
Efficient data 

read/write access 
Fault-tolerant and 

responsive if replica 
is down 

– E MS CH C CP 

Voldemort 
(Sumbaly et al., 

2012; 
Voldemort, 

2015) 

St 

Automatic data  
partitioning and  
replication 

Transparent fault  
recovery 

High read/write 
availability and hor-
izontal scalability 

Internal T, E Sl CH C AP 

KAI 
(SourceForge, 

2015) 
St 

Highly fault-tolerant 
with low latency 

Scalable with config-
urable nodes 

– E Asyn CH – AP 

MemcacheDB 
(MemcacheDB, 

2015) 
St 

Efficient data storage 
and retrieval 

Good performance for 
read/write 

High storage  
availability 

API O MS None C CP 

Riak 
(Sheehy, 2010) B 

Deriving DynamoDB 
Fault-tolerant and 

highly available 
Data conflict  

resolution 
Support to configure 

commodity hardware 

MapReduce E MM CH Sc AP 

O
pe

n-
so

ur
ce

/ 
co

m
m

er
ci

al
 

BerkeleyDB 
(Oracle, 2015b) B 

Scalability and high 
performance 

Configurable products 
Support to complex 

data management 
procedures 

XQuery E MS None Sc CP 

1 St=data store, B=database 
2 St=strong, Tr=transactional, T=tunable, E=eventual, O=ordered, PP=per page, Fl=flexible, MV=multi-version, R=runtime 
3 MS=master-slave, MM=multi-master, Sl=selectable replication factor, CR=cross-region, RS=replica set, Syn=synchronous, 
Asyn=asynchronous, Symm=symmetric 

4 Sh=sharding, CH=consistent hashing, H=horizontal partitioning, K=key-based, Fe=federation, R=runtime 
5 Pr=primary key, Sc=secondary, KV=key-value, C=customized, M=metadata, BT=B-tree, FT=full text 
6 CP=consistency–partition resilience, AP=availability–partition resilience                                                                            (To be continued) 
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Table 5   

Data 
model License Technology 

Data 
store/ 

database1 
Features Query  

language 
Consis- 
tency2 

Repli- 
cation3 

Partition- 
ing4 

Index- 
ing5 

Brewer’s 
category6 

 C
om

m
er

ci
al

 

DynamoDB 
(Sivasubramanian, 

2012) 
B 

High write availability 
Automatic replication and 

fault tolerance 

API 
 E CR CH Pr, Sc AP 

C
ol

um
n-

or
ie

nt
ed

 O
pe

n-
so

ur
ce

 

HBase St 

Concurrent mode failure 
exception hindering  
read write performance 

Auto-split and  
redistribution 

Range, 
MapReduce Tr Sl Sh Pr CP 

Hypertable 
(Hypertable, 

2015) 
B 

Highly available and fast 
random read/write 

Compatible with many 
distributed file systems 

HQL Tr Sl Sh Sc CP 

Cassandra 
(Hewitt, 2010; 
Lakshman and 
Malik, 2010) 

B 

Deriving DynamoDB 
Easy and cost saving 
High write throughput,  

no read compromises 
(locks) 

Range, 
MapReduce T, E Sl Sh Sc AP 

Pr
op

rie
ta

ry
 

BigTable 
(Chang et al., 

2008) 
St 

Easy data compression 
process 

Fast query response 
Allowing an infinite 

number of columns in a 
table 

Automatic, less recon-
figuration to scale the 
system 

GQL Tr MS H Sc CP 

D
oc

um
en

t-o
rie

nt
ed

 

O
pe

n-
so

ur
ce

 

MongoDB 
(MongoDB, 2015) B 

Easily scalable, 
fault-tolerant, and  
highly available 

Built-in data encryption 
file system 

Support to complex 
schema 

Flexibility of data model 

SQL, 
MapReduce E RS,  

MS Sh Sc CP 

Terrastore 
(Terrastore, 2015) St 

Persistent in-memory 
document storage 

Automatic data redistri-
bution and load  
balancing 

Dynamic cluster  
configuration 

API PP MS CH C CP 

RethinkDB 
(RethinkDB, 

2015) 
B 

Easy scalability 
Robust and more  

consistent 
Fast real-time query  

response 

ReQl St Syn, 
Asyn Sh Sc CP 

SimpleDB 
(Sciore, 2007) St 

Highly available and fast 
query retrieval Erlang E MS Sh M, C AP 

For description of notes 1–6, see p.1061                                                                                                                                     (To be continued) 
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Table 5  

Data 
model License Technology 

Data 
store/ 

database1 
Features Query  

language 
Consis- 
tency2 

Repli- 
cation3 

Partition- 
ing4 

Index- 
ing5 

Brewer’s 
category6 

D
oc

um
en

t-o
rie

nt
ed

 O
pe

n-
so

ur
ce

 

CouchDB 
(Apache, 2015) B 

Easy to use 
Fault-tolerant 
Concurrency for  

request workload 

MapReduce E MM Sh BT AP 

OrientDB 
(OrientDB, 2015) B 

High-speed storage 
Low-cot scalability 
Heterogeneity of  

replicating servers 
Schema-less 

SQL MV MM Sh Sc AP 

Pr
op

rie
ta

ry
 

Rocket U2 
(RocketSoftware, 

2015) 
B 

Dynamic support to  
applications 

Highly efficient,  
scalable, and reliable  
for growing data 

RetrieVe 
and 

UniQuery 
R MS, 

Asyn None Sc AP 

C
om

m
er

ci
al

 

Qizx 
(Qualcomm, 

2014a) 
B 

Highly scalable, availa-
ble, and consistent 

Fast and efficient query 
execution 

Support to customized 
indexing 

XQuery, 
REST Tr MS R FT, C AP 

G
ra

ph
-b

as
ed

 

O
pe

n-
so

ur
ce

 

HyperGraphDB 
(Iordanov, 2010) B 

Flexible and dynamic 
schema 

Non-blocking  
concurrency 

Efficient data modeling 
and knowledge  
representation 

API E P2P P2P KV CP 

Neo4j B 

Highly scalable and  
robust 

Efficient concurrent  
write transactions 
without locking 

Fast for write scaling  
transaction loads 

SPARQL, 
internal St, E MS Sh Sc CP 

AllegroGraph 
(AllegroGraph, 

2015) 
B 

High storage  
throughput 

Highly scalable, availa-
ble, and persistent  

Fast query execution and 
high data load speed 

SPARQL, 
RDFS++ Tr MS Fe Sc, Sp CP 

C
om

m
er

ci
al

 

InfiniteGraph 
(InfiniteGraph, 

2014) 
B 

Rapid development  
of data-intensive, 
graph-based  
applications 

Easy traversal of complex 
graph elements 

Processing load  
distribution 

Availability of data  
filtering techniques  
to improve query  
performance 

Easy to use 

Internal, 
API Fl, E Syn Sh Sc CP 

For description of notes 1–6, see p.1061 
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Document databases such as MongoDB, Ter-
rastore, and RethinkDB are CP-type databases. These 
databases prefer consistency over availability. Mon-
goDB and RethinkDB are authoritative systems from 
the design perspective. Authoritative systems do not 
face the data inconsistency problem, which makes 
MongoDB and RethinkDB simple to build applica-
tions on top of them, whereas unavailability occurs 
very often for them (RethinkDB, 2015). Terrastore 
ensures that each single document is consistent and up 
to date. Because Terrastore does not allow inter- 
document transactions or multiple simultaneous op-
erations on the same document, Terrastore becomes 
more scalable with simpler consistency. Tolerance to 
node failure is provided by Terrastore to the extent 
that at least one server node is working and the server 
node must have connection to the master node. Oth-
erwise, Terrastore will not ensure partition resilience. 

All the graph databases discussed in this paper 
are of CP type. None of them is more inclined to 
support availability than consistency. AllegroGraph is 
the only graph database that implements transactional 
consistency; the rest of the graph databases aim to 
provide eventual consistency. HyperGraphDB im-
plements Berkeley DB and offers non-blocking con-
currency for transactions. Furthermore, Hyper-
GraphDB has flexible schema, and updates are 
eventually consistent. Similarly, Neo4j supports non- 
blocking concurrency and eventual consistency. Even 
write-intensive transactions are efficiently accom-
plished by Neo4j. InfiniteGraph also supports even-
tual consistency for write operations. 

High availability to its extent can be achieved 
only when each request has received a response and 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

the system does not ever face a complete locking state. 
However, it will not guarantee consistent results of 
requests. Key-value databases such as Aerospike, 
Voldemort, KAI, Riak, and DynamoDB are AP-type 
databases. Voldemort is designed as a highly available 
database where eventual consistency ensures almost 
up-to-date replicas. DynamoDB, when receiving a 
data update request, does not propagate it to all rep-
licas for the reason of not locking them from availa-
bility to read requests. DynamoDB performs updating 
on a quorum of servers, while other servers respond to 
clients’ requests in order to provide them access to 
consistent data at that time (Ramakrishnan, 2012). 
The quorum of servers needs to ensure successful 
write update before any request is entertained (Wang 
et al., 2014). Riak has complex conflict resolution 
strategies, and implementation of quorum also results 
in latency problems. However, Riak is strongly 
available and is a partition-resilient key-value  
system. 

Cassandra is the only column-oriented AP-type 
database. Cassandra adopts the same mechanism to 
ensure availability and propagate consistency as 
DynamoDB does. Like Riak, Cassandra also has 
complex procedures for conflict resolution and 
quorum implementation. SimpleDB, CouchDB, 
OrientDB, Rocket U2, and Qizx are AP-type docu-
ment databases. OrientDB offers versioning to im-
plement the effect of write operations. In this way, 
effect of change in data can be viewed in different 
versions. As far as graph databases discussed in this 
paper are concerned, none of them is of AP type. In 
the next section we will summarize the discussion and 
identify future research challenges. 

Fig. 8  Big data storage technologies and the CAP theorem 
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5  Discussion and future research challenges 
 
This paper has presented the evolution and tax-

onomy of big data storage technologies. Technologies 
are commonly designed to provide a storage solution 
along with high scalability to growing data volumes 
with heterogeneous data structures. These databases 
are deployed over distributed systems to achieve high 
availability, improved data access, performance, and 
fault tolerance. However, the extent of provisioning 
these services is different for each database, which 
makes these databases distinguishable from each 
other. This extent helps identify these databases as of 
CP or AP type. In Table 5, contemporary key-value, 
column-oriented, document-oriented, and graph da-
tabases are presented and analyzed on the basis of 
their adopted procedures for consistency, data parti-
tioning, replication, and indexing. Moreover, their 
correlation with Brewer’s CAP categorization is kept 
in the analysis to suggest their type. 

Key-value databases apply data partitioning on 
separate records regardless of each having the same 
attributes. A unique key is assigned to each record, 
and the value contains data of a record. Although they 
are mostly suitable for unstructured data, structured 
data can be presented with these databases if record- 
based data retrieval and analysis needs to be per-
formed on it. As far as licensing is concerned, most of 
the column-oriented and key-value databases are 
open source. BigTable is the only column-oriented 
database that has proprietary license. Likewise, Dy-
namoDB is the only key-value database that is 
available commercially. Column-oriented databases 
such as HBase, Hypertable, Cassandra, and BigTable 
are mostly suitable for structured data with enough 
support to unstructured data. These databases apply 
vertical partitioning on the data and store each column 
as a separate chunk of data, and performing queries on 
attributes as well as attribute-based analysis of data is 
easier with this data model. 

As far as document-oriented databases are con-
cerned, these databases also have the key-value data 
structure. However, the value identifies a document 
instead of a record. Documents are usually XML files 
with some schema. Compared to the key-value data 
model, document databases have less support to 
scalability and unstructured data. Furthermore, data-
bases having document structure are, on average, 

prone to availability and consistency. For instance, 
MongoDB, Terrastore, and RethinkDB are consistent 
databases, whereas SimpleDB, CouchDB, OrientDB, 
Rocket U2, and Qizx are highly available. Graph 
databases are well-structured databases, where ana-
lyzing data as well as their relationships is significant. 
Although graph databases do not have good support 
to scalability and clustering, these databases offer 
complex data structures. According to our analysis, 
all graph databases in this survey are CP-type  
systems. 

With the proliferation of big data, industry and 
academia are more interested in data management 
than computational management. The technology has 
much evolved in provisioning vast storage and pro-
cessing resources. However, in big data management, 
efficient techniques for data acquisition, prepro-
cessing, processing, and storage are desirable. The 
ongoing development is focusing on bringing effi-
cient solutions that support big data management. The 
Hadoop framework (Lam et al., 2010) has become the 
de facto standard for big data processing with the 
MapReduce programming model, which offers batch 
processing of extensive volume of files residing over 
commodity hardware, whereas for real-time big data 
processing, the simple, scalable streaming system (S4) 
(Neumeyer et al., 2010) is a widely adopted tool. The 
Apache Software Foundation has a list of contribu-
tions to big data solutions such as Mahout, Lucene, 
Hive, Pig, and Spark. 

Besides processing, storage optimization is also 
important. Methods for data clustering, replication, 
and indexing for efficient storage utilization and data 
retrieval are of main concern. Storage-optimizing 
hierarchical agglomerative clustering (Buza et al., 
2014), the K-means algorithm (Zhao et al., 2009), and 
the artificial bee colony (ABC) algorithm (Karaboga 
and Ozturk, 2011) are the clustering approaches used 
in recent research. The storage technologies presented 
in this paper have built-in support to replication, 
which in turn ensures data availability, fault tolerance, 
and less data accessing delay. For efficient replication, 
the ABC algorithm (Taheri et al., 2013), D2RS (Sun 
et al., 2012), and JXTA-overlay P2P platform (Spaho 
et al., 2013) are the famous techniques used. HAIL 
(Dittrich et al., 2012) provides an indexing solution 
for Hadoop, which improves the data search and re-
trieval process. 
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While summarizing the storage technologies 
presented in this paper, it can be stated that all the 
storage structures are partition-resilient, meaning that 
network partitioning and disconnections in distrib-
uted systems is rare and there are many options to 
handle and recover from a partitioning situation. Thus, 
the choice is only between consistency and availabil-
ity. As illustrated in Section 4, the support to both of 
them is beyond the possibility of a distributed system. 
Thus, the discussed distributed storage systems are 
placed in either category. Storage systems that pro-
vide more support to consistency are CP-type systems. 
Apart from the efficiency of available big data storage 
technologies, the challenges of storing future big data 
still need to be addressed and considered. Finding and 
adopting the tradeoff between consistency and 
availability so that more throughput gains can be 
achieved from distributed storage systems leads to a 
number of challenges in this research. The following 
are some of these challenges: 

1. Frequent data update and schema change: The 
update rate is mostly very high and the volume of data 
is growing very rapidly. In case of unstructured data, 
change in schema is also very common. However, 
available storage technologies are scalable, but the 
need to be efficient in data updates and schema is still 
under consideration. Some technologies like HDFS 
do not offer data update but append operation in only 
support. 

2. Partitioning method: Data models suggest two 
methods of big data partitioning to make it contained 
on distributed storage nodes accordingly. Horizontal 
or vertical partitioning is applied on data based on 
access patterns. Data may be required to be analyzed 
by the features or records. Thus, the choice of  
column-oriented or key-value NoSQL databases is 
available. However, the prediction of access pattern 
might be wrong or change during execution. This 
poses a critical research challenge on existing data 
models specified for big data storage solutions. 

3. Replication factor: Data are replicated over 
multiple sites to achieve fault tolerance and high 
availability to its users. Although this concept makes 
the storage very efficient to improve access perfor-
mance, it compromises data consistency and does not 
suit in frequent data changing and up-to-date access 
requirement conditions. This leads to poorer access 
performance if frequent consistency locks are expe-

rienced. Furthermore, the number of replicas for data 
is a multiple of storage space consumption. Some-
times it looks wise to access data from a remote site 
rather to use local storage space. Therefore, precon-
figured or customized replication by applications or 
users is a challenge. 

4. User expertise: Data are becoming more 
complex nowadays. At the same time, the user space 
is broadened by enterprises, so that users from dif-
ferent domains can execute queries on data according 
to their problems. It reveals the requirement of  
simple-to-deploy and easy-to-use storage but with 
higher performance than the relational database solu-
tion. To achieve improved performance, sometimes 
these databases integrate DBMS platforms, which 
undoubtedly meets the expectations, but the imple-
mentation and configuration process becomes com-
plex for non-expert users. 
 
 
6  Conclusions 

 
A categorization of contemporary storage tech-

nologies for big data has been attempted in this paper. 
The main objective of the paper is to investigate and 
analyze state-of-the-art big data storage technologies 
and to present their categorization based on Brewer’s 
CAP theorem for distributed systems, so that re-
searchers and big data analysts can explore enhanced 
storage solutions in specific domains, where availa-
bility, consistency, and fault tolerance are considera-
ble requirements. Moreover, presentation of limita-
tions of existing storage technologies for adequate 
scalability is a major concern of this work. This paper 
focuses mainly on categorization under data models 
and classifies modern storage technologies for big 
data as key-value, column-oriented, document-  
oriented, and graph systems. These technologies are 
further studied and analyzed by a critical review using 
Brewer’s CAP theorem. A discussion is carried out to 
survey and highlight the efficiency of each storage 
system for the scalability, consistency, and availabil-
ity requirements of big data. Future key challenges 
with regard to storing big data are also emphasized in 
the discussion. In conclusion, it can be stated that 
systems are inclined towards provisioning con-
sistency and availability as required by applications 
or users. This leading phenomenon is used to suggest 
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categorization of available big data storage systems 
so that the selection with either preference becomes 
obvious. 
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