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Abstract: Accurately forecasting the operational performance of a tunnel boring machine (TBM) in advance is useful for making 

timely adjustments to boring parameters, thereby enhancing overall boring efficiency. In this study we used the Informer model to 

predict a critical performance parameter of the TBM, namely thrust. Leveraging data from the Guangzhou Metro Line 22 project 

on the big data platform in China, the model's performance was validated, while data from Line 18 was used to assess its gener-

alization capability. Results revealed that the Informer model surpasses Random Forest, Extreme Gradient Boosting, Support 

Vector Regression, k-Nearest Neighbors, Back Propagation, and Long Short-Term Memory models in both prediction accuracy 

and generalization performance. In addition, the optimal input lengths for maximizing accuracy in the single time-step output 

model are within the range of 8-24, while for the multiple time-step output model, the optimal input length is 8. Furthermore, the 

last predicted value in the case of multiple time-step outputs showed the highest accuracy. It was also found that relaxation of the 

Pearson's analysis method metrics to 0.95 improved the performance of the model. Finally, the prediction results were most af-

fected by earth pressure, rotation speed, torque, boring speed, and the surrounding rock grade. The model can provide useful 

guidance for constructors when adjusting TBM operation parameters.  
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1  Introduction 

 

With rapid urban development, metro construc-

tion has become increasingly popular (Chen et al., 

2022). In the process of metro construction, tunnel 

boring machines (TBMs) have been widely used 

because of their advantages of good safety and high 

efficiency (Zhang et al., 2015; Liu et al., 2016; Zheng 

et al., 2016). The cost of metro construction depends 

largely on the use time of TBMs, and reasonable 

control of the construction period is also directly 

related to cost control. Without an accurate under-

standing of the TBM's boring performance, it is dif-

ficult to make an accurate estimate of project com-

pletion time, which may lead to unreasonable sched-

uling of the construction period and TBM boring 

arrangements, thereby increasing the project cost. 

Therefore, to keep the cost and duration of a project 

within reasonable limits, it is necessary to predict the 

boring performance of the TBM before excavation 

(Rostami, 2016; Zhou et al., 2020; Xu et al., 2023). 

In the past, scholars have explored the boring per-

formance of TBMs mainly by conducting tests. The 

first model to predict boring performance was the 

Colorado School of Mines model (Rostami and 

Ozdemir, 1997; Rostami, 1997). It is an idealized 

empirical model that predicts boring performance 

based on rock properties and an idealized breaking 

mechanism. The model has given many scholars a 

method to predict boring performance. Most similar 

empirical models come from the analysis of parame-

ters in real engineering (Yagiz, 2008; Hassanpour, 

2018; Pan et al., 2020; Bilgin and Yüksel, 2023). 

Empirical models that consider field or experimental 

conditions have an important reference value. How-
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ever, almost all TBMs operate in complex geological 

environments. Most empirical models are applicable 

only to specific situations and lack generalizability, 

restricting their widespread application. 

Neural networks have a strong ability to extract 

features from information, and fit nonlinear rela-

tionships better than empirical models. They are 

widely used in civil engineering (Asteris et al., 2016; 

Psyllaki et al., 2018; Asteris et al., 2019; Hajihassani 

et al., 2019; Asteris et al., 2021a; Asteris et al., 2021b; 

Li et al., 2021b; Emad et al., 2022). Lu et al. (Lu and 

Shi, 2023) combined Kernel extreme learning ma-

chine, variable modal decomposition and the 

Levy-hunter-prey optimizer algorithm model to pre-

dict the boring speed of a TBM and found that the 

combined model outperformed the whale algorithm 

and the unimproved hunter-prey algorithm seeking 

algorithm. Shi et al. (Shi et al., 2022) used a genetic 

algorithm to optimize a back propagation (BP) neural 

network to predict the tunneling speed of a shield 

machine. 

The dynamic adaptation of TBM operational pa-

rameters in response to evolving geological condi-

tions can be conceptualized as a time series problem 

in machine learning. A BP neural network works by 

forecasting output parameters based on prevailing 

input parameters. However, there are inherent con-

straints in its capacity to anticipate forthcoming op-

erational parameters. Timely projections for future 

TBM operational parameters are necessary, as they 

enable proactive adjustments by operators, ensuring 

the TBM is maintained at an optimal operational 

performance level (Fig. S1). 

As a result, the recurrent neural network (RNN) 

model for input sequences with continuity is popular 

in predicting TBM boring performance. RNN-like 

models consider the back-and-forth relationship of 

the data (i.e., they consider the temporal nature of the 

data), and the effects of previous inputs are consid-

ered when processing the current input. 

Mahmoodzadeh et al. (Mahmoodzadeh et al., 2022) 

proposed a gray wolf optimized long short-term 

memory (LSTM) model for TBM penetration rate 

prediction. It was found to be more accurate in its 

prediction than the LSTM model. Gao et al. (Gao et 

al., 2021) obtained an accurate prediction of TBM 

penetration rate using an LSTM model. Li et al. (Li et 

al., 2021a) used an LSTM neural network model to 

predict the cutterhead torque and total thrust. 

The above studies showed the superiority of time 

series modeling in predicting TBM boring perfor-

mance. However, the RNN model has disadvantages, 

such as its inability to deal with very long time series, 

and the problems of gradient vanishing and gradient 

explosion (Bengio et al., 1994). The LSTM model, as 

a variant of the RNN model, can effectively inhibit 

the gradient vanishing problem that occurs in the 

RNN model. But if the time span of the TBM input 

data is very long, LSTM may still face the problem of 

gradient vanishing or gradient explosion, and has a 

disadvantage in parallel processing. 

The Informer model is an improvement of the 

transformer model. It has the advantages of the 

transformer model and alleviates its shortcomings 

(Zhou et al., 2021). For example, the Informer model 

combines a global self-attention mechanism and a 

local attention mechanism to capture both global and 

local information, while the traditional transformer 

model relies more on global information and less on 

local information when processing sequence data. 

The Informer model is processed by time-step 

chunking, which splits the long sequences into mul-

tiple sub-sequences, thereby reducing the memory 

requirement of the model. The problems of excessive 

memory consumption and computational complexity 

of the transformer model in dealing with long se-

quences are solved in the Informer model. 

Table S1 lists some of the studies that have con-

tributed to significant progress in this field. However, 

a research gap exists regarding the applicability of the 

Informer model to the domain of TBM performance 

prediction. Previous studies emphasized analysis of 

TBM performance prediction results solely within the 

confines of the test set, neglecting a comprehensive 

exploration of the generalization capabilities across 

numerous models. 

Given these challenges, the primary objective of 

this investigation was to test the efficacy of the In-

former model in forecasting TBM performance. Ad-

ditionally, a comparative analysis was carried out 

involving the construction of models such as random 

forest (RF), XGBoost (XGB), support vector regres-

sion (SVR), k-nearest neighbors (KNN), backpropa-

gation (BP), and long short-term memory (LSTM). 

The input parameters were earth pressure, rotation 

speed, penetration rate, torque, thrust force and boring 
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speed (TBM parameters), as well as rock uniaxial 

compressive strength, surrounding rock grade, and 

liquid limit (geological parameters), with thrust force 

characterizing the TBM boring performance as the 

output. The significance of the input parameters was 

checked by performing a sensitivity analysis of the 

high-precision model. A tunnel section of the 

Guangzhou Metro Line 22 was used as a case study to 

demonstrate the feasibility of the model. A tunnel 

section of Line 18 of the Guangzhou Metro was used 

as a case study to demonstrate the generalization 

ability of the model. The specific workflow diagram 

is shown in Fig. 1. 

 

 
Fig. 1  Workflow diagram of this study 

 

Compared to previous studies (Table S1), the 

innovations of this study were as follows: 

1. For the first time, using the liquid-limit indi-

cator of the formation as an input parameter. 

2. For the first time, the Informer model was used 

to predict TBM performance, with a correlation co-

efficient of 0.99 using just over 30,000 pieces of data. 

The trained model performed well in other projects. 

3. Using only 8 input parameters, the model 

performed better than previous models. The Informer 

model reduced the running time and improved effi-

ciency. 

4. The Informer model performed better than the 

RF, XGB, SVR, KNN, BP, and LSTM models on 

different projects, proving that the model has excel-

lent generalization ability. 

 

 

2  Methodology 

 

The informer model proposed by Zhou et al. 

(Zhou, et al., 2021), is an advanced time series fore-

casting model based on deep learning and a 

self-attention mechanism. It incorporates a 

self-attention mechanism inspired by the transformer 

model, enabling it to effectively capture long-term 

dependencies and spatio-temporal correlations within 

time series data. 

The core idea behind the Informer model re-

volves around an encoder-decoder architecture (Fig. 

S2). The encoder/decoder architecture constitutes a 

pivotal component within the TBM-Informer model. 

The encoder plays a vital role in the conversion of the 

input sequence into an intermediate representation, 

typically a fixed-length vector, which encapsulates 

the semantic information inherent in the input se-

quence. In contrast, the decoder assumes the crucial 

responsibility of iteratively generating the output 

sequence, leveraging the intermediate representation 

crafted by the encoder as its foundational basis. 

To account for the temporal aspect, the Informer 

model introduces a mechanism for encoding temporal 

features, embedding temporal information into the 

model. This allows the model to learn time-dependent 

patterns and trends, improving its accuracy in pre-

dicting future time series values.  

 

 

3  Dataset establishment 

3.1  Case description 

The data used in the model came from the 

Guangzhou Metro Big Data Platform. The project 

that generated this data, Guangzhou Metro Line 22, is 

located in Panyu, Guangzhou, China. The specific 

route is shown in Fig. S4. Granite is the most domi-
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nant rock type in the tunnel. The length of the interval 

is 4987.8 m, the radius of the line plane is 900, 1100, 

1120, and 2200 m, the buried body of the tunnel top 

is 23.4~37 m, and the line spacing is 7.5~10.3 m. 

3.2  Data preprocessing 

The data used in the model came from the shield 

construction monitoring system for new line con-

struction of rail transit and had 57,006 entries. Data 

were collected at one-minute intervals, and the col-

lected data parameters included earth pressure and 

thrust. Many useless values were included in the 

collected parameters, so the data had to be processed 

according to the TBM boring characteristics. In this 

section, we introduce the data processing methods. 

3.2.1  TBM boring section data extraction 

A TBM does not remain in a state of excavation 

(Fig. 2). Intervals where rotation speed (RPM), torque 

(TOR), thrust force (TF), and boring speed (BR) 

record zero values signify non-excavation states. The 

parameters collected encompass various operational 

states of the TBM, such as assembly (i.e., the instal-

lation of the cutter to the disc), advancement (TBM 

excavation), and cessation (TBM entering a pause 

state after advancing a specified distance). Conse-

quently, significant variations are observed in metrics 

such as torque, rotation speed, and thrust force, partly 

attributable to these distinct operational phases. 

 

 
Fig. 2 TBM parameter raw data 

 

Based on these variable operational statuses, an 

initial step involves the exclusion of data corre-

sponding to assembly and cessation phases. Subse-

quently, data collected during the initial 1 or 2 

minutes of the excavation section, during which the 

TBM remains in an assembled state due to operational 

response delays in certain excavation sections, are 

also identified and removed. 

We define a state judgment formula to determine 

whether the TBM is working or not by using the 

boring speed, rotation speed, thrust force, and torque. 

The specific formula is expressed as follows: 
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3.2.2  TBM boring section data extraction 

Fig. 3 illustrates the geological profile of the 

TBM tunneling. Different colors distinguish soil and 

rock layers, which are labeled with specific layer 

codes. Table 1 provides the corresponding names and 

surrounding rock grades for these layers. The tunnel 

excavation area is denoted in Fig. 5 by a series of 

purple rectangles, each symbolizing a ring in the 

tunnel boring machine excavation process. In the case 

of a metro traversing through composite strata, their 

values are computed through a weighted average 

method. 

 

 
Fig. 3 Geological profile of TBM boring 

 

Table 1 Layer code explanation 

Code Name SRG 

5Z-2 
Hard-plasticized mixed granite 

residual soil 
Ⅴ 

6Z Mixed fully weathered granite Ⅴ 

7Z Mixed strong weathered granite Ⅴ~Ⅳ 

8Z Mixed medium weathered granite Ⅳ 

9Z Mixed slightly weathered granite Ⅱ~Ⅲ 

 

3.2.3  TBM boring section data extraction 

Input parameters characterized by strong corre-

lations among their features may result in overfitting 

or model instability, thereby diminishing the model’s 
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generalization capability (Xue et al., 2023). Conse-

quently, it is imperative to filter the preprocessed 

input parameters. Given the numerical nature of the 

variables, we used Pearson's correlation coefficient 

(Benesty et al., 2009) to evaluate the associations 

among the input parameters. Fig. 4 shows the corre-

lation coefficients derived via the Pearson correlation 

coefficient method. The findings reveal a notable 

linear correlation (exceeding 0.8) between penetra-

tion and boring speed, shear wave velocity and UCS, 

as well as liquid limit, plastic limit, moisture content, 

wet density, and pore ratio. Therefore. this segment of 

the data needed to be excluded. 

 
Fig. 4 Heat map of the Pearson's correlation coefficient 

matrix 

 

Data were acquired through the TBM's inte-

grated sensors. Anomalies in the data can arise due to 

equipment or mechanical malfunctions. The presence 

of outliers necessitates their removal, as they do not 

faithfully represent the authentic state of TBM exca-

vation. In this study, parameter outliers were identi-

fied using a boxplot method (Carter et al., 2009). Fig. 

5 shows the boxplot derived from the computation of 

TBM data parameters, including earth pressure, rota-

tion speed, penetration rate, torque, thrust force, and 

boring speed. 

 
Fig. 5 Boxplot method to detect outliers in data 

 

A boxplot is a graphical tool used for the depic-

tion of data distributions and the identification of 

outliers. This technique uses quartiles and the inter-

quartile range (IQR) as fundamental calculation met-

rics. Quartiles represent the four values used for par-

titioning a dataset. The first quartile (Q1) designates 

the lower 25% segment of the sorted dataset, while 

the second quartile (Q2) corresponds to the midpoint 

or the 50% position in the sorted dataset. The third 

quartile (Q3) represents the upper 25% portion of the 

sorted data. The interquartile range is defined as the 

difference between Q3 and Q1, signifying the range 

encompassing the central 50% of the dataset. 

In accordance with (Xue, et al., 2023), the fol-

lowing formula was used to characterize outliers: 

 

upper 3

lower 1

 = +1.5

 = -1.5  









L Q IQR

L Q IQR
                        (3)

 

Therefore, data points that exceed the Lupper and Llower 

ranges can be determined to be outliers and need to be 

eliminated 

Throughout the operational phase of TBM, re-

al-time data are acquired via sensors. However, owing 

to the intricate engineering environment and equip-

ment operational characteristics, the collected data 

often manifest various disturbances and noise, and 

even inadequate data collection may occur. The ob-

jective of the predictions in this study pertains to 

TBM performance under normal operating conditions. 

To address this challenge, we removed data with large 

intervals between boring rings and processed the data 

using wavelet denoising signal processing techniques. 

Wavelet denoising entails decomposing the original 

signal into low-frequency and high-frequency com-
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ponents through the extraction of wavelet coefficients 

at different scales. The low-frequency signal encap-

sulates the overall progress of the tunneling project, 

while the high-frequency signal captures signal noise. 

The denoised signal is derived through wavelet re-

construction of signals across diverse scales. The 

process of wavelet denoising unfolds as follows: 

Step1: Signal processing using wavelet trans-

form for data contaminated by noise. 

Step2: The wavelet coefficients obtained from 

the transformation are subjected to processing aimed 

at noise removal. 

Step3: Wavelet reconstruction is undertaken 

across different scales to obtain the denoised signal. 

Fig. 6 shows a graph comparing the thrust force 

both pre- and post-denoising. The application of 

wavelet denoising diminishes the noise inherent in the 

initial thrust force, resulting in a more refined repre-

sentation of the settling data and enhanced reflection 

of deformation characteristics. The identified model 

input parameters are presented in Table 2. 

 
Fig. 6 Diagram of the thrust force denoising effect 

 

 

Table 2 Finalize model input parameters 

Parameter type Parameters Data type Max Mean Min Unit 

TBM parameters Earth pressure (EP) Time-varying 

parameter 

3.83 2.31 0 N/mm 

Rotation speed (RS) 2.20 1.59 0.7 Rpm 

Torque (TQ) 9550 4726.71 660 kN*m 

Boring speed (BR) 54 24.83 1 mm/min 

Thrust force (TF) 46965.66 27311.46 5352.99 kN 

Geological pa-

rameters 

Uniaxial compressive 

strength (UCS) 

Time-invariant 

parameters 

62.42 16.91 0.762 MPa 

Surrounding rock 

grade (SRG) 

4.952 4.28 2.86 N/A 

Liquid limit (LL) 34.305 17.87 0 N/A 

 

 

4  Results analysis 

4.1  Prediction results  

Fig. S7 presents a visual contrast between the 

predicted thrust values and the actual thrust values, 

accompanied by the associated model evaluation 

metrics. The findings underscore the commendable 

thrust prediction performance achieved by the In-

former model. The model shows a correlation coeffi-

cient of 0.99819 and a minimal error value of 

0.001576, attesting to its good predictive capabilities. 

Note that, before using wavelet analysis, we obtained 

data with an MSE of 0.127341 and R
2
 of 0.94373, 

while after using wavelet analysis, we obtained data 

with an MSE of 0.001576 and R
2
 of 0.99819. The 

enhancement effect of wavelet analysis is very ob-

vious. 

The data's volatility is indicative of the TBM 

operating within diverse geological formations. 

Sudden fluctuations in data values correspond to 

variations in parameters and geological formations, 

underscoring the TBM's autonomous capability to 

adjust the thrust to accommodate different geological 

conditions. Predicting fluctuations in data poses a 

challenge for numerous models, including the In-

former model examined in this study. Nevertheless, 

the model shows a robust fit in the initial stages. This 

observation reinforces the model's capacity to adapt 

to parameter and stratigraphic variations, demon-

strating its resilience in handling extreme data points. 

Evidently, the Informer model adeptly captures the 

temporal dynamics of TBM thrust. 

In addition, the performance of machine learning 

methods such as the RF, XGB, SVR, KNN, BP, and 

LSTM as TBM performance prediction models was 
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compared with that of the Informer model (Table 3). 

Notably, the Informer model showed superior per-

formance across the dataset. Among traditional ma-

chine learning models, the RF model showed optimal 

performance, whereas SVR models showed inferior 

outcomes. 

 

Table 3 Comparison of the performance of the Informer model and other models on the test set 

Model 
Model Parameter Set-

ting 
MSE R

2
 a 

RF 
N_estimators=300 

Max_depth=20 
0.037267 0.96256 0.7155 

XGB 
N_estimators=400 

Max_depth=7 
0.062253 0.93746 0.6072 

SVR 

C=0.1 

Epsilon=0.1 

Kernel=rbf 

0.179173 0.82001 0.5320 

KNN N_neighbors=7 0.056542 0.94320 0.6666 

BP 

LR=0.0001 

Hidden=5 

Optimizer=Adam 

0.341733 0.88269 0.5486 

LSTM 

LR=0.0001 

Hidden=100 

Optimizer=Adam 

0.006369 0.99339 0.8533 

Informer 

Encoder=5 

Decoder=1 

Attention=Full 

0.001576 0.99819 1.0 

*N_estimators are the number of decision trees. Max_depth is the maximum depth of each decision tree. C is the penalty parameter. Epsilon is the 

tolerance to error. Kernel is the kernel function used to map the data in a high dimensional space. LR is the learning rate. Hidden is the number of 

neurons in the hidden layer. Optimizer is the type of optimizer. Encoder is the number of encoders. Decoder is the number of decoders. Attention is 

the type of attention mechanism. 

 

Note that deep learning models have the capacity 

to use preceding thrust force as inputs for predicting 

subsequent outputs. This attribute contributes to the 

effective performance observed in LSTM and In-

former models on the dataset. This observation un-

derscores the strong guidance provided by deep 

time-series neural network models (such as LSTM 

and Informer models) in the prompt adaptation of 

TBM operational parameters. 

 

5  Discussion 

5.1  Performance of new project  

In the context of machine learning algorithms, 

the evaluation of performance often hinges on the 

crucial metric of generalization ability. Models 

characterized by strong generalization capabilities are 

likely to extend well to diverse scenarios. Conse-

quently, one of the aims of this research was to derive 

a generalized model tailored for the prediction of 

operating parameters of TBMs, transcending the 

constraints of singular project applications. 

With the overarching objective in focus, in this 

section we introduce an additional tunneling project 

to assess the generalization capacity of the model 

established in Chapter 4. Situated in the Panyu Dis-

trict of Guangzhou City, China, this project pertains to 

a segment of the tunnel associated with the Guang-

zhou Metro Line 18. The specific route is shown in 

Fig. S8. 

The dataset used in the model originates from the 

shield construction monitoring system used in the 

construction of a new rail transit line. Comprising 

35,076 entries collected at one-minute intervals, the 

dataset encompasses parameters such as earth pres-

sure and thrust, and aligns with that of Guangzhou 

Metro Line 22. Subsequent to processing, the data 

were integrated into the model established in Chapter 

5 through the training process. 

Fig. S9 illustrates the model's performance in 

this new project, wherein the R
2
 attained a value of 

0.99843 and the MSE reached 0.001575, with a slight 
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improvement of 0.024% in prediction accuracy. No-

tably, the superior performance of the trained model 

was shown to extend to diverse project contexts. 

Furthermore, the pronounced fluctuation in thrust 

force within the new project posed challenges for the 

model's predictive capabilities. However, the In-

former model showed notable proficiency in learning 

from extreme values, underscoring its robust gener-

alization capability and applicability across varied 

projects. 

To assess the Informer model's generalization 

capability, trained RF, XGB, SVR, KNN, BP, and 

LSTM models were compared with the Informer 

model in predicting the performance of the new TBM 

project. The outcomes of these predictions are pre-

sented in Table 4. 

 

Table 4 Performance of the Informer model and other models on the new TBM project 

Model 
Model Parameter 

Setting 
MSE R

2
 

Rate of change 

in model accu-

racy 

a 

RF 
N_estimators=200 

Max_depth=20 
0.393617 0.60638 -37.0% 0.6743 

XGB 
N_estimators=400 

Max_depth=7 
0.366567 0.63343 -32.4% 0.6841 

SVR 

C=100 

Epsilon=0.1 

Kernel=rbf 

0.258279 0.74172 -9.5% 0.6954 

KNN N_neighbors=9 0.621751 0.37825 -59.9% 0.6714 

BP 

LR=0.0001 

Hidden=5 

Optimizer=Adam 

0.540540 0.70782 -19.8% 0.7067 

LSTM 

LR=0.0001 

Hidden=100 

Optimizer=Adam 

0.110627 0.67924 -31.6% 0.8250 

Informer 

Encoder=5 

Decoder=1 

Attention=Full 

0.001575 0.99843 0.024% 1.0 

*N_estimators are the number of decision trees. Max_depth is the maximum depth of each decision tree. C is the penalty parameter. Epsilon is 

the tolerance to error. Kernel is the kernel function used to map the data in a high dimensional space. LR is the learning rate. Hidden is the number 

of neurons in the hidden layer. Optimizer is the type of optimizer. Encoder is the number of encoders. Decoder is the number of decoders. Attention 

is the type of attention mechanism. 

 

Remarkably, most models showed suboptimal 

performance in novel instances. The KNN model 

showed the most significant disparity, featuring a 

prediction MSE of 0.621751, an R
2
 of merely 0.38, 

and a 59.9% decrease in prediction accuracy. Con-

versely, the SVR model emerged as the 

top-performing traditional machine learning model, 

with an error of 0.258279, an R
2
 of 0.74172, and only 

a 9.5% decrease in prediction accuracy. 

The performance of the traditional models in the 

new project showed that most had limited generali-

zation capacity in this particular context, rendering 

them less suitable for predicting TBM performance. 

Compared with other models, the Informer model 

showed a slight improvement of 0.024% in prediction 

accuracy. This suggests that the Informer model ef-

fectively learns the intricate relationships among data, 

leading to more precise predictions. This enhance-

ment can be attributed to the capability of the In-

former model in capturing temporal dependencies 

inherent in time series data. By leveraging the intrin-

sic features of time series data and using more effi-

cient learning strategies, the Informer model has 

demonstrated superior performance in predictive 

tasks. 

Evaluation of the efficacy of various models 

across diverse projects showed that RF, XGB, SVR, 

KNN, and BP models need substantial training data to 

develop models with robust generalization capabili-

ties. Conversely, LSTM and Informer models can 
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effectively leverage historical temporal patterns as 

inputs to predict subsequent moments. Such predic-

tive models show outstanding performance when 

confronted with data exhibiting temporal correlations. 

 

5.2  Effects of various inputs, labels and predicted 

lengths  

In Section S2.3, we delineated the methods used 

for predicting thrust forces by using data from the 

previous 8 minutes. This entails using the past 8 

minutes of data for training, and the subsequent 1 

minute of data for supervised learning. The selection 

of the length of the input time assumes significant 

importance. An excessively short time length com-

pels the model to emphasize partial information, 

whereas an unduly extended length diminishes the 

influence of earlier data on the model. To optimize the 

model's performance, time length was systematically 

varied within the range of 2 to 30 min, taking into 

consideration the distinctive characteristics of TBM 

boring durations. Subsequently, the model was re-

trained using the revised time length. The following 

sections discuss the effect of different time lengths 

(Table S5) on the model. 

 

5.2.1  Results of single predicted length 

In this section, we elucidate the effect of indi-

vidual time-step outputs on the model's precision. 

Table 5 illustrates the various input lengths used in the 

model and presents the corresponding correlation 

coefficients achieved through model training. 

As the input length increases, there is an en-

hancement in the model's precision, although the rate 

of change is not high. Optimal accuracy is observed 

within the input length range of 8-30. This trend is 

attributed to the model's ability to assimilate a larger 

volume of data as the input length increases, thereby 

positively influencing accuracy. However, an exces-

sively long input length escalates the model's training 

complexity, subsequently increasing computational 

costs. In light of the precision shown by the model, 

we conclude that the ideal input length for a single 

time-step output model falls within the range of 8-16. 

The model's R
2
 achieved a value of 0.99 and the MSE 

value did not exceed 0.003. 

 

Table 5 Single time-step model length setting 

Method Input length Label length Pred length MSE value of 

model 

R
2
 value of 

model 

Single length out-

put 

4 1 1 0.00298 0.99657 

8 1 1 0.00158 0.99819 

16 1 1 0.00210 0.99759 

24 1 1 0.00247 0.99716 

30 1 1 0.00295 0.99660 

 

5.2.2  Results of long predicted length 

In this section we assess the predictive profi-

ciency of the Informer model across multiple time 

steps. Table 6 shows the temporal extent configura-

tions of the multi-step prediction model and the cor-

relation coefficients derived from model training. 

As the input length increases, the change in 

model accuracy becomes less prominent, ultimately 

stabilizing around 0.98. The increase in input length 

facilitates the assimilation of a greater amount of 

information by the model. However, this increase 

does not result in a notable improvement in accuracy 

and so does not justify the increase in training time. 

The input length of 8, as shown in this study, achieves 

an equilibrium between maintaining a reasonably 

elevated prediction accuracy and minimizing the 

duration of training. 

 

Table 6 Multiple time-step model length setting 

 Input length Label length Pred length MSE value of 

model 

R
2
 value of model 

Multi-length 

output 

8 4 4 0.00842 0.99031 

16 4 4 0.00923 0.98939 
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24 4 4 0.00946 0.98912 

30 4 4 0.01297 0.98509 

 

5.2.3  Comparison of the accuracy of different 

predicted values 

As illustrated in Fig. S10, within the model with 

a prediction length of 2, the thrust force receives a 

maximum of 2 predictions (i.e. y2) and a minimum of 

1 prediction (i.e. y1). Consequently, the model's ac-

curacy evaluation is contingent on a comprehensive 

comparison between all predicted values and the 

ground truth. However, it is important to 

acknowledge that diverse task specifications neces-

sitate distinct criteria for prediction values. For cer-

tain task requisites, the ultimate prediction outcome 

may necessitate only the most precise value. Thus, it 

becomes imperative to investigate the model's accu-

racy under various output parameters. Within this 

study, metrics including the R
2
 value, R

2
 value of the 

average predicted values, R
2
 value of the first pre-

dicted value, and R
2
 of the final predicted value were 

selected for comparative analysis. The relevant pa-

rameter definitions are shown in Fig. S11. 

Fig. 7 presents a juxtaposition of the R
2
 across 

diverse length combinations as outlined in the table. 

Evidently, the initial prediction by the model shows 

the lowest R
2
, while conversely, the final prediction 

shows the highest R
2
. Moreover, the R

2
 of the model 

demonstrates a more rapid decrease with an increase 

in prediction length. The smallest disparity observed 

among the various R
2
 values is merely 0.01006, while 

the highest disparity can extend up to 0.05783. The 

TBM excavation process is inherently subject to en-

vironmental fluctuations and multiple contributing 

factors. Consequently, the parameters collected by the 

TBM show a higher correlation with data obtained 

from several temporally proximate time steps, both 

preceding and succeeding. 

 
Fig. 7 Comparison of different predicted values of R

2 

 

Based on this data characteristic, we make a 

reasonable speculation. The length of the prediction is 

too long, and the model needs to consider too much 

earlier data. Consequently, this proliferation of his-

torical data dilutes the correlation with the present 

data, resulting in a less accurate initial prediction by 

the model. At the same time, with the continual slid-

ing of the temporal window, the association between 
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the prevailing data and its historical counterparts 

intensifies progressively. This progression ensures a 

higher R
2
 value for the ultimate prediction from the 

model. 

 

5.3  Sensitivity analysis  

Sensitivity analysis (Yang and Zhang, 1997) 

involves the assessment of the dependency between 

predicted values and input parameters. This analysis 

is instrumental in identifying the specific parameters 

that influence the thrust force of the TBM. The 

mathematical formulation of this process is as fol-

lows: 

1

2 2

1 1

( )


 




 

n

ik jkk

ij n n

ik jkk k

x x
R

x x
                        (4) 

 

where xi and xj represent input and output parameters 

respectively, N represents the number of datasets, and 

the value of Rij is between 0 and 1. The closer the 

value of Rij is to 1, the stronger the correlation be-

tween the input and output parameters. 

The results of the sensitivity analysis are shown 

in Fig. 8. Two baseline values, 0.95 and 0.77, are 

discernible. Notably, the input parameters affecting 

the prediction results, in descending order of influ-

ence, are rotation speed, earth pressure, surrounding 

rock grade, torque, and boring speed. The parameters 

that can be adjusted by operators during operation 

include rotation speed, and boring speed. These pa-

rameters show correlations with the output parame-

ters exceeding 0.95, indicating a robust association 

between these variables. Conversely, uniaxial com-

pressive strength and liquid limit of the rock show 

weaker correlations with the output parameters. 

Consequently, we surmise that the main factors in-

fluencing TBM performance in hard strata are the 

TBM-related parameters. These findings can serve as 

valuable guidance for operators when adjusting TBM 

parameters. 

 
Fig. 8 Sensitivity analysis results 

 

5.4  Limitations and Future Work 

In this study, we achieved satisfactory experi-

mental results, but there were also some limitations to 

our research. Firstly, our data size was relatively small, 

making it difficult for the trained models to be ap-

plicable in broader domains. Secondly, the numerical 

range of the data was limited (Table 4), posing a 

challenge to the performance of the models under 

extreme values, which requires further investigation. 

Lastly, there were certain difficulties in the practical 

application of the models. Currently, the assessment 

of TBM performance often cannot rely solely on big 

data analysis. We are working to overcome these 

challenges and endeavor to apply our research find-

ings to practical engineering projects. 

In the future, we will build upon the results of 

this study by training the models with more data to 

improve their generalization ability and by applying 

the models to practical engineering applications. 

 

6  Discussion 

 

This research used the Informer model to fore-

cast the performance of a TBM, based on data derived 

from specific intervals along Guangzhou Metro Lines 

18 and 22. The proposed predictive model focuses 

mainly on elucidating the impact of TBM operational 

parameters and stratum properties on TBM perfor-

mance. The model showed a prediction accuracy 

exceeding 0.99 for thrust force in two projects. 

1. RF, XGB, SVR, KNN, BP and LSTM models 

were used as comparison models. The models per-

formed well on the test set of the original project, but 
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poorly on the new project and lacked some generali-

zation ability. 

2. Single time-step and multiple time-step out-

puts had distinct impacts on the model. Prudent con-

sideration should be given when determining suitable 

temporal intervals for the input parameters. In this 

investigation, an input length ranging from 8 to 24 

min proved suitable for single time-step outputs, 

whereas an input length of 8 min was deemed ap-

propriate for multiple time-step outputs. The model 

correlation coefficients reached 0.99 and 0.98, re-

spectively. 

3. Correlation coefficients were calculated for 

the model's predicted values, including the average, 

first, and last predicted values. Notably, the last pre-

dicted value showed a stronger correlation with the 

true value. 

4. Given the limited number of input parameters 

in the model, the exclusion threshold in the Pearson 

analysis method was adjusted from 0.8 to 0.95. This 

adaptation resulted in the new model demonstrating 

superior performance on novel data compared to the 

previous model. 

5. The sensitivity analysis revealed that the input 

parameters affecting the prediction results, in de-

scending order of influence, were cutterhead rotation 

speed, earth pressure, surrounding rock grade, and 

torque. These parameters had correlation coefficients 

exceeding 0.95. Conversely, the impact of rock uni-

axial compressive strength and liquid limit on the 

predicted results was comparatively minor, about 

0.77. 

In our view, applying the obtained models to 

real-world engineering remains challenging within 

the scope of this research domain. Continuously re-

fining models through practical application and 

achieving a high level of generalization poses a for-

midable task. Consequently, in future research en-

deavors, we advocate prioritizing the effective im-

plementation of acquired models in practical engi-

neering contexts. These findings can provide valuable 

guidance to operators in fine-tuning tunneling ma-

chine parameters.  
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中文概要 

 
题 目：利用 Informer 模型预测 TBM 性能：以广州地铁

项目案例研究 

 

作 者：赵君行
1
，丁小彬

1,2
 

机 构：
1
华南理工大学，土木与交通学院，中国广州，

510641；
2
华南理工大学，华南岩土工程研究院，

中国广州，511442 

 

目 的：提前准确预测隧道掘进机（TBM）的运行性能有

助于及时调整掘进参数，从而提高整体掘进效

率。本文旨在探讨不同模型和时间长度对 TBM

性能预测效果的影响，考虑了土压、转速、扭矩、

掘进速度、推力、岩石单轴抗压强度、围岩等级、

液限等因素，研究得到预测性能最好的模型，以

提高 TBM 性能的预测精度。 

创新点：1. 提出了预测 TBM 性能的 Informer 模型框架；

2. 每个模型仅使用 7 个参数预测 TBM 性能；3. 确

定了 Informer 模型的最佳参数组合；4. Informer

Une
dit

ed

https://doi.org/https:/doi.org/10.1016/j.tust.2018.02.009
https://doi.org/https:/doi.org/10.1016/j.gsf.2020.02.011
https://doi.org/10.1007/s00500-021-06005-8
https://doi.org/10.1016/j.tust.2016.01.034
https://doi.org/10.1007/s12145-023-01043-2
https://doi.org/https:/doi.org/10.1016/j.eswa.2022.118303
https://doi.org/https:/doi.org/10.1016/j.eswa.2022.118303
https://doi.org/10.1007/s11440-019-00852-4
https://doi.org/https:/doi.org/10.1016/j.tust.2016.01.009
https://doi.org/10.1145/3546632.3546633
https://doi.org/https:/doi.org/10.1016/j.undsp.2022.11.002
https://doi.org/https:/doi.org/10.1016/j.undsp.2022.11.002
https://doi.org/https:/doi.org/10.1016/j.tust.2023.105317
https://doi.org/10.1016/j.tust.2007.04.011
https://doi.org/10.1007/BF01045717
https://doi.org/10.13807/j.cnki.mtt.2015.05.004
https://doi.org/10.1016/j.tust.2016.01.023
https://doi.org/10.1007/s10064-019-01626-8


|  J Zhejiang Univ-Sci A (Appl Phys & Eng)   in press 14 

模型在性能和概括能力方面优于其他比较模型。 

方 法：1. 收据收集与分析，确定模型输入参数；2. 通过

不同模型预测 TBM 性能，并比较预测性能；3. 通

过不同模型对新数据的预测性能，得到模型的泛

化能力；4. 比较不同输入长度与不同参数组合对

TBM 性能预测性能的影响。 

结 论：1.RF、XGB、SVR、KNN、BP 和 LSTM 模型被

用作对比模型。这些模型在原始项目的测试集上

表现良好，但在新项目上表现不佳，缺乏一定的

泛化能力。2. 单时间步和多时间步输出对模型的

影响截然不同。在确定输入参数的合适时间间隔

时应审慎考虑。在本次调查中，8 至 24 分钟的输

入长度被证明适用于单时间步骤输出，而 8 分钟

的输入长度被认为适用于多时间步骤输出。模型

相关系数分别达到 0.99 和 0.98。3. 计算了模型预

测值的相关系数，包括平均预测值、首次预测值

和最后一次预测值。值得注意的是，最后一个预

测值与真实值的相关性更强。4. 鉴于模型中输入

参数的数量有限，皮尔逊分析方法的排除阈值从

0.8 调整为 0.95。这一调整使得新模型在新数据

上的表现优于之前的模型。5. 敏感性分析表明，

影响预测结果的输入参数从大到小依次为刀盘

转速、土压力、围岩等级和扭矩。这些参数的相

关系数超过 0.95。相反，岩石单轴抗压强度和液

限对预测结果的影响相对较小，约为 0.77。 

关键词：TBM 性能；Informer 模型；深度学习；推力 
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