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Abstract: The high-temperature and high-pressure valve is the key equipment of the wind tunnel system; it controls the generated 

high-temperature and high-pressure gas. In order to reduce the adverse impact of high-temperature and high-pressure gas on the 

strength of the valve body, a cooling structure is set on the valve seat. This can significantly reduce the temperature of the valve 

body and seat. The effect of its structure on the cooling characteristic and stress of valve seat is studied and six main parameters 

that can completely describe the geometry of the cooling structure are proposed. The central composite design method is used to 

select sample points and the multi-objective genetic algorithm (MOGA) method is used for structural optimal design. Based on 

these, a modification method according to the main parameters for the valve seat is proposed. Results show that the cooling 

structure weakens the pressure bearing capability of the valve seat. Among the six main parameters of the valve seat, the distance 

from the end face of the lower hole to the Z-axis and the distance from the axis of the lower hole to the origin of the coordinates 

have the most obvious effect on the average stress intensity of the valve seat. An optimum design value is proposed. This work can 

provide a reference for the design of high-temperature and high-pressure valves. 
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1  Introduction 

 

The wind tunnel test is one of the most important 

means of aerodynamics research in the aerospace 

field. It simulates the airflow around an aircraft or 

object by generating and controlling gas. It provides 

reliable reference data for aircraft design and testing 

(Formato et al., 2018; Yu et al., 2018; Shitolé et al., 

2024; Achuthan et al. 2021). A high-temperature and 

high-pressure valve (HTHPV) is the key equipment 

of the wind tunnel test system. It works in a 

high-temperature and high-pressure environment and 

its main function is to control high-temperature and 

high-pressure gas in the wind tunnel system (Armijo 

et al., 2022; Zhou et al., 2022; Aliyeva et al., 2023; 

Morales et al., 2023). Due to the high-temperature 

and high-pressure conditions, the valve body must 

have an excellent pressure-bearing capacity. If the 

structural design of the valve body is not efficient it 

may negatively affect the life span of the valve and 

cause economic loss and even casualties. Therefore, it 

is hard to overstate the importance of structure 

optimization of the valve body for a HTHPV to assure 

its reliability under extreme conditions (Bryk et al., 

2022; Grice et al., 2022). 

Thermal stress greatly impacts the 

pressure-bearing capacity of valves under 

high-temperature and high-pressure conditions 

(Shul’zhenko et al., 2021; Li et al., 2022; Sundararaj 

et al., 2022; Qian et al., 2023; Deng, 2022). The 

influencing mechanism of thermal stress on valve 

strength have been considered through experiment 

(Jawwad et al., 2019), numerical simulation (Bryk, 

2022) and theoretical calculation (Hwang et al., 2020). 

Li et al. (2022) analyzed the valve body stress in the 

opening process of a feed-water valve by the 
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thermo-fluid-solid coupling method and measured the 

variation of thermal stress with time. Sun et al. (2021) 

studied the impact stress of the valve seat at the 

moment of rapid collision to prevent drawback, and 

then optimized the valve seat according to a response 

surface methodology combined with multi-objective 

optimization. Fersaoui et al. (2022) evaluated the 

effect of the thermo-mechanical boundary on the 

stress of the valve and calculated the thermal stress 

based on the temperature gradient of each component. 

Zhang et al. (2021) conducted thermal and structural 

analysis under transient thermal shock conditions 

using the thermal-fluid-structure coupling model 

They found that, rather than the pressure, thermal 

stress is the main source of stress causing overload 

accidents in nuclear power plants. Jalali et al. (2019) 

analyzed fatigue and crack in the stop valve body, and 

compared the stress concentration points obtained 

with the real coordinates of the crack so as to evaluate 

the reliability of the valve body. 

Structural optimization is an effective way to 

improve the performance of the valve (Qi et al., 2021; 

Bao et al., 2022). Finding the optimal structural 

parameters of the valve through relevant optimization 

algorithms has attracted the attention of many 

researchers (Kunčická et al., 2022; Li et al., 2022). 

Zong (2022) et al. proposed a dimensionality-reduced 

computational fluid dynamics modeling method, 

selecting three structural parameters as design 

variables for structural optimization. Taking a Tesla 

valve as the research object, Wang et al. (2022) 

conducted optimization design, with two structural 

parameters as input variables and mixing efficiency 

and pressure drop as output parameters. Cao et al. 

(2022) focused on the nonlinearities and parameter 

uncertainties of a main pressure regulating valve, 

improving pressure regulation performance using 

parameters optimization and control methods. Zhang 

et al. (2022) used a new multi-objective gravitation 

search algorithm with non-dominated screening and 

chaos mutation to optimize the pressure regulating 

valve and revealed the relationship between multiple 

parameters of the valve. Lin et al. (2022) analyzed the 

effect of seal parameter on seal contact performance 

of the charge valve and improved the uniformity of 

the sealing surface by structural optimization. Wang 

et al. (2021) replaced the Kriging model with the 

response surface method for greater accuracy and 

established a combined surrogate model to solve the 

optimization problem of a butterfly valve. 

The above research indicates that reducing the 

thermal loading is beneficial for improving the 

bearing pressure ability of HTHPV. The most 

common way of heat insulation is to install material 

with ultra-low thermal conductivity, which prevents 

the contact between high-temperature fluid and the 

inner surface of the valve. The thermal shock of 

high-temperature fluid on the valve body is not 

completely eliminated by this method, which leads to 

increasing temperature of the valve. This article 

proposes insulation with a cooling structure. The 

cooling performance is significantly better than that 

from installing material with ultra-low thermal 

conductivity. 

The HTHPV studied in this paper is insulated 

with asbestos between the flow channel of the valve 

body and the high-temperature and high-pressure gas. 

The valve body is thus unaffected by 

high-temperature and high-pressure loads. The 

temperature of the valve seat increases significantly 

as the seat is in direct contact with the 

high-temperature and high-pressure gas, amd leads to 

the possibility of creep or even structural failure in the 

seat. Therefore, a cooling structure is required inside 

the seat, where coolant can be introduced. The main 

research purpose of this paper is to improve the 

cooling efficiency and structural strength for the 

valve seat considering the cooling arrangements. The 

temperature of the valve seat with different cooling 

structures under steady-state condition is analyzed by 

a numerical simulation method and the thermal stress 

of the valve seat is calculated by the thermal-solid 

coupling method. The cooling structure is represented 

by six main structure parameters, which are set as 

independent variables. The average temperature and 

average thermal stress are selected as target variables. 

The response surface optimization method is 

conducted to determine the optimal structure 

parameters of the valve seat, for the best cooling 

performance and the lowest stress level in it. This 

work can provide a reference for the design of 

HTHPV in future. 

 

 

2  Method description 

2.1  Geometric model 
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Fig. 1 shows the structure of the 

high-temperature and high-pressure valve (HTHPV), 

whose size is the same as that of the actual product in 

the wind tunnel. HTHPV mainly consists of six parts: 

valve cover, valve stem, valve core, valve seat, valve 

body and inner pipe. The diameter of the inlet and 

outlet pipes for the HTHPV is 65 mm. The thermal 

insulation material is arranged between the valve 

body and the inner pipe and the cooling structure is 

set both in the valve body and valve seat and can 

reduce effectively the temperature of the valve body 

and valve seat. In this work, the XOZ plane is set on 

the symmetry plane of the valve body, as shown in 

Fig.1. In order to reduce the influence of boundary 

stress on the calculation results, pipes are added at the 

inlet and outlet of the HTHPV. The origin of coor-

dinates is set at the intersection of axis of the inlet 

pipe and the outlet pipe.  

 
Fig. 1  Geometric model of high-temperature and 

high-pressure valve in wind tunnel 

 

When the valve is closed, the valve core comes 

into close contact with the seat along the circumfer-

ential direction with no gap between them under 

preload. The valve seat, welded to the valve body, is 

connected with the inner pipe and valve core, which 

includes eight groups of cooling structures along the 

circumferential direction. Six key parameters of the 

cooling structure are selected to study the cooling 

performance. As shown in Fig.2, P1 is the diameter of 

the upper round groove, P2 is the diameter of the shear 

hole, P3 is the distance from the center of the shear 

hole to the Z-axis, P4 is the distance from the end face 

of the lower hole to the Z-axis, P5 is the diameter of 

the lower hole, P6 is the distance from the axis of the 

lower hole to the origin of the coordinates. The above 

six parameters completely describe the geometric 

characteristics of the cooling structure. 

 
Fig. 2  Geometric model of the valve seat 

 

2.2  Mesh and boundary condition 

The mesh of the geometry of the HTHPV is 

carried out by MESH software in ANSYS WORK-

BENCH (Canonsburg PA USA). The mesh of the 

HTHPV is shown in Fig.3. The sweep method is 

selected to mesh the inlet pipe and outlet pipe, whose 

grid size are both set to 12 mm. A tetrahedron grid is 

used to generate the mesh of the valve body, valve 

cover, valve seat and inner pipe. Gird sizes of the 

valve seat, inner pipe, valve body and valve cover are 

4mm, 7mm and 12mm respectively with 871070   

elements and 1328162 nodes. The contact type be-

tween components is bonded. The properties of solid 

materials are obtained from ASME BPVE.II.D.M 

-2021, and are listed in Table 1. 

 
Fig. 3  Mesh of the HTHPV 
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Table 1  Measured data of the experiments in five states 

Number Part Material 

1 Valve cover ASTM A182 F304 

2 Valve stem X-718/GH3128 

3 Valve core X-718/GH3128 

4 Valve seat NS3103/310S 

5 Inner pipe NS3103/310S 

6 Valve body ASTM A182 F304 

 

As shown in Fig.4, there are three main bound-

ary conditions for the temperature calculation for the 

HTHPV. The contact surface of the valve seat and 

inner pipe with the high temperature gas is regarded 

as a convection boundary, the temperature is 600°C 

and the coefficient is 1000 W/m
2
·°C. The surface of 

the cooling structure is regarded as a convection 

boundary, the temperature is 22°C and the coefficient 

is 4500 W/m
2
·°C, and is calculated by the Dit-

tus-Boelter Equation. This equation is the longest and 

most commonly used correlation for forced convec-

tion inside pipelines. 
 

0.80.023Re Pr ,n

f f fNu                     (1) 

 

 
Fig. 4  Boundary conditions of the HTHPV 

 

In this equation, Nu is the Nusselt Number; Re is the 

Reynolds Number; Pr is the Prandtl Number; when 

the fluid is heated, n=0.4, when the fluid is cooled, 

n=0.3. The calculation equation for the Nusselt 

Number is as follows: 

,
hl

Nu


                                (2) 

 

In this equation, h is the convective heat transfer co-

efficient, λ is the thermal conductivity coefficient, l is 

the characteristic length. 

The calculation equation for the Reynolds 

Number is as follows: 
 

Re
ul

v
                                 (3) 

 

In this equation, u is the fluid velocity, v is the kin-

ematic viscosity. 

The external surface of the HTHPV is regarded 

as the convection boundary, the temperature is 22°C 

and the coefficient is 15 W/m
2
·°C. For the structural 

calculation of the HTHPV, there are four main 

boundary conditions. The contact surface of the valve 

seat and inner pipe with the high temperature gas is 

set as the pressure boundary, with a value of 14 MPa. 

The surface of the cooling structure is set as the 

pressure boundary; the value is 0.2 MPa. The end 

surface of the down pipe is a fixed boundary. The 

temperature distribution n the HTHPV is introduced 

into the later stress analysis for the HTHPV. 

2.3  Optimization method 

In this work, as shown in Table 2, the parame-

ters P1, P2, P3, P4, P5, P6 are set as input parameters, 

and the parameters P7, P8, P9, P10, P11, P12, P13 are set 

as output parameters. P7 is the average temperature 

of the valve seat, in 
°
C; P8 is the maximum temper-

ature of the cooling surface for the valve seat, in
 °
C; 

P9 is the average temperature of the cooling surface 

for the valve seat, in 
°
C; P10 is the maximum stress 

intensity of the valve seat, in MPa; P11 is the average 

stress intensity of the valve seat in MPa; P12 is the 

maximum stress intensity of the cooling surface for 

the valve seat, in MPa; P13 is the average stress in-

tensity of the cooling surface for the valve seat in 

MPa. In order to fully analyze the effect of structural 

parameters on cooling and bearing pressure capacity, 

the selection range of input parameters is the limit 

that can construct geometric entities. In order to en-

sure structural integrity, parameter values are set as 

shown in table 3. This paper takes the minimum 

values of P7 and P11 as the goal of optimization. The 

central composite design method is selected for ex-

periments. It provides effective information about 

experimental variables and experimental errors with 
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minimal test cycles; 45 samples are generated. The 

screening method is selected for optimization. The 

genetic aggregation is selected to fit the response 

surface. A multi-objective genetic algorithm (MO-

GA) method is used for structural optimization de-

sign, as a classic multi-objective optimization algo-

rithm. Its basic aim is to solve multi-objective opti-

mization problems within the framework of a genetic 

algorithm; it uses techniques such as fitness sharing, 

Pareto front ranking, and crowding distance. The 

main steps of MOGA are eight: population initiali-

zation, fitness calculation, Pareto front sorting, 

crowding distance calculation, selection operation, 

crossover and mutation operation, population update, 

and terminination condition. 

 

Table 2  Meanings of input parameters and output par-

amaters 

Type Number Parameter Name 

input 
parameters 

1 P1 
diameter of the upper 

round groove 

2 P2 
diameter of the shear 

hole 

3 P3 
distance from center of 
shear hole to the Z-axis 

4 P4 
distance from end face 

of lower hole to the 
Z-axis 

5 P5 
diameter of the lower 

hole 

6 P6 
distance from the axis 

of the lower hole to the 
origin of coordinates 

output 
parameters 

7 P7 
average temperature of 

the valve seat 

8 P8 
maximum temperature 
of the cooling surface 

9 P9 
average temperature of 

the cooling surface 

10 P10 
maximum stress inten-
sity of the valve seat 

11 P11 
average stress intensity 

of the valve seat 

12 P12 
maximum stress inten-
sity of cooling surface 

13 P13 
average stress intensity 
of the cooling surface 

Table 3  Value range of structural parameters of valve seat 

Number Parameter 
Initial 
value 

Range 

1 P1 10 mm 9–14 mm 

2 P2 5 mm 2–8 mm 

3 P3 75 mm 65–85 mm 

4 P4 47 mm 35–50 mm 

5 P5 14 mm 8–14 mm 

6 P6 58 mm 43–58 mm 

2.4  Verification of results 

A theoretical calculation is carried out to verify 

the accuracy of the numerical results. The inner pipe 

of HTHPV is selected as the object. Its geometry is 

relatively regular. The inlet pipeline of the valve is 

considered as a thin-walled cylinder under a uniform 

internal pressure environment and its stress is cal-

culated by the force balance principle.The radial 

stress (X-axis) of the inlet pipe is selected as the 

reference index. The inner wall radius of the inner 

pipe is r1=32.5 mm, the outer wall radius of the inner 

pipe is r2=36.5 mm. The stress intensity of the inner 

pipe is calculated as follows: 

 

14 69
120.5MPa

2 2 4

PD

t



  


               (4) 

 

For the numerical calculation, six paths are es-

tablished and average stress values  are obtained. Fig. 

5 shows the comparison between numerical results 

and theoretical results. The maximum stress for nu-

merical calculation is 123.51 MPa, with a relative 

error between numerical and theoretical results of 

2.50%. The results of the numerical simulation are 

consistent with the results of the theoretical calcula-

tion and indicate that the numerical method is suffi-

ciently accurate to be used for the structural optimi-

zation analysis of the valve seat. 

 
Fig. 5  Comparison between numerical results and theo-

retical results 

 

 

3  Results and discussion 

3.1  Temperature and stress analysis 

Fig. 6 shows the temperature distribution of the 

valve seat when the HTHPV is closed. It can be seen 

from the figure that the surface temperature of the 

valve seat in contact with high-temperature air is the 

highest, and the temperature around the valve body is 

relatively lower, with a maximum temperature of 
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242.47 °C and a minimum temperature of 22 °C. The 

temperature of the valve seat decreases from the di-

rection of the central axis to the periphery. Because of 

the cooling structure, the temperature around the 

cooling structure is significantly lower than that fur-

ther away, which shows that the cooling structure has 

a significant effect on the temperature of the valve 

seat. The temperature of the end face of the upper 

round groove is higher than that of the lower hole. In 

both the temperature near the central axis of the valve 

seat is higher while the temperature around it is lower. 

 
Fig. 6  Temperature distribution of the valve seat 

 

 
Fig. 7  Stress distribution of the valve seat 

As shown in Fig. 7, the temperature gradient in 

the area in contact with high temperature gas is large. 

The thermal stress caused by the temperature gradient 

is also relatively large, which shows that the thermal 

stress has a significant effect on the stress distribution 

in the valve seat. The trend of stress distribution in the 

valve seat is similar to that of the temperature distri-

bution. The maximum stress appears in the center 

hole of the valve seat; its value is 624 MPa. The 

minimum stress occurs distant from the central hole, 

and the stress decreases from the central axis of the 

valve seat to the periphery. The cooling structure 

causes a stress concentration in the valve seat in this 

area, especially in the root area of the upper circular 

groove and the lower hole, which shows that the ex-

istence of the cooling structure leads to a weakening 

of the pressure bearing capacity of the valve seat. 

3.2  Structural optimization analysis 

Fig. 8 shows the local sensitivity of input pa-

rameters P1–P6 to output parameters P7–P11, and thus 

the variation of output parameters with input param-

eters. It can be seen from the figure that the parameter 

which has the greatest influence on the average tem-

perature (P7) is the distance from the end face of the 

lower hole to the Z-axis (P4). The parameter which 

has the greatest influence on the average stress in-

tensity (P11) is the distance from the end face of the 

lower hole to the Z-axis (P4). The diameter of the 

lower hole (P5) and the distance from the axis of the 

lower hole to the origin of coordinates (P6) both have 

significant effect on the average temperature (P7). 

The distance from the end face of the lower hole to the 

Z-axis (P4), and the diameter of the lower hole (P5) 

and distance from the axis of the lower hole to the 

origin of coordinates (P6) all have significant effect 

on the average stress intensity of the cooling surface 

for the valve seat (P13). 

 
Fig. 8  Response of structural parameters to optimization 

objectives 
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Fig. 9  Response of parameters P2 and P3 on optimization target P7 

 

As shown in Fig. 9, when P2 (diameter of the 

shear hole) changes from 2 mm to 8 mm, P7 (average 

temperature of the valve seat) generally first increases 

and then decreases. With the change of P2, when P3 

(distance from the center of the shear hole to Z-axis) is 

between 65 and 72.5 mm, P7 generally first increases 

and then decreases; When parameter P3 is between 

72.5 and 80 mm, P7 shows an "M-type" change trend; 

When P3 is between 80 and 85mm, P7 first increases 

and then decreases. When P2 reaches a minimum or 

maximum value, the value of P7 is small. With the 

continuous increase of P3, the variation range of P7 

with P2 increases. When P2 ≤ 2 mm or P2 ≥7 mm and 

P3 ≥ 80 mm, P3 is relatively small, which provides a 

way to reduce the average valve seat temperature 

(P7). 

Fig. 10 illustrates the variation trend of P7 (av-

erage temperature of the valve seat) with P4 (the dis-

tance from end face of the lower hole to the Z-axis) 

and P6 (the distance from the axis of the lower hole to 

the origin of the coordinates). When P5 (diameter of 

the lower hole) remains unchanged, P7 increases with 

the increase of P4. When P4 remains unchanged, P7 

decreases with the increase of P5. Therefore, reducing 

P4 and increasing parameter P5 can effectively reduce 

the value of P7. When P4 remains unchanged, P7 

decreases with the increase of P6. When P6 ≤52 mm, 

the decrease range of P7 is large, and when P6 >52 

mm, the decrease range of P7 is small. When P6 re-

mains unchanged, P7 also increases with the contin-

uous increase of P4. Therefore, increasing P6 and 

reducing P4 can also effectively reduce the value of 

P7. 

 
(a) Response of parameters P4 on optimization target P7 

 
(b) Response of parameters P6 on optimization target P7 

Fig. 10  Response of parameters P4 and P6 on optimization 

target P7 

 

As shown in Fig. 11, there is the response sur-
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face of P7 (average temperature of the valve seat) with 

P1 (the diameter of the upper round groove) and P2 

(the diameter of the shear hole). When P2 remains 

unchanged, P7 decreases with the increase of P1. 

When P1 remains unchanged, P7 first increases and 

then decreases with the increase of P2. Therefore, 

increasing P1 and P2 ≤ 3 mm or P2 ≥ 7 mm can reduce 

the value of P7 slightly. 

Fig. 12 indicates the variation trend of P11 (the 

average stress intensity of the valve seat) with P1 (the 

diameter of the upper round groove) and P2 (the di-

ameter of the shear hole). When P2 ≤ 5 mm, P11 in-

creases with the increase of P1. When P2 ≥ 5 mm, P11 

decreases first and then increases with the increase of 

P1. It should be noted that when P11 ≤ 12.5 mm, the 

change range of P11 is small, and when P11 ≥ 12.5 mm, 

the change range of P11 is relatively large. When P1 is 

small, the value of P11 increases with the increase of 

P2. When P1 is large, the value of P11 decreases with 

the increase of P2. Increasing the decreasing P2 while 

reducing the P1 can effectively reduce the value of 

P11. 

 

 
Fig. 11  Response of parameters P1 and P2 on P7 

 
Fig. 12  Response of parameters P1 and P2 on optimization target P11 

 

Fig. 13 shows the variation trend of P11 (the av-

erage stress intensity of the valve seat) with P1 (the 

diameter of the upper round groove) and P5 (the di-

ameter of the shear hole). When P4 ≤ 40 mm, and with 

the increase of P1, parameter P11 first decreases and 

then increases. When P4 > 40 mm, P11 first increases 

and then decreases with the increase of P1. When P1 

remains unchanged, P11 increases with the increase of 

parameter P4. This shows that when P1 is 11–12 mm 

and P4 ≤ 10 mm, the value of P11 can be effectively 

reduced. When P6 ≤ 55.5 mm, with the increase of P5, 

P1 also shows an M-type change trend, which shows 

that when P5=11 mm and P6 ≤ 43 mm, the value of P11 

is the smallest. 
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(a) Response of parameters P1 on optimization target P11 
 

 
(b) Response of parameters P5 on optimization target P11 

Fig. 13  Response of parameters P1 and P5 on optimization 

target P7 

 

In Fig. 14, the response surface of P11 (the av-

erage stress intensity of the valve seat) with P3 (the 

distance from the center of the shear hole to the 

Z-axis) and P4 (the distance from end face of the 

lower hole to Z-axis) is shown. When P3 remains 

invariable, P11 decreases with the increase of P4. 

When P4 remains unchanged, P11 increases with the 

increase of P3. Therefore, the value of P11 can be 

reduced slightly by increasing P4 and reducing P5. 

 
Fig. 14  Response of parameters P3 and P4 on optimization 

target P7 

 

Fig. 15 shows the response surface of P11 (the 

average stress intensity of valve seat) with P2 (the 

diameter of the shear hole) and P6 (the distance from 

the axis of the lower hole to the origin of the coordi-

nates). When P2 remains unchanged, parameter P11 

decreases with the increase of P6. When P6 ≤ 50 mm, 

P11 is augmented with the increase of parameter P2. 

When P6 > 50 mm, parameter P11 falls off with the 

increase of P2. Therefore, increasing P2 and decreas-

ing P6 can reduce the value of P11 slightly. 

At the values of P1-P6 shown in Table 4, the 

average temperature of the valve seat can be reduced 

from 242.47°C to 70.61°C, and the average stress of 

the valve seat can be reduced from 115.22MPa to 

100.02MPa, which shows that the cooling perfor-

mance of the valve seat has been greatly improved 

and security is guaranteed. 

 
Fig. 15  Response of parameters P2 and P6 on optimization 

target P7 
 

Table 4  Optimization results of structural parameters for 

optimization value 

Parameter Initial value Final value 

P1 10 mm 11.90 mm 

P2 5 mm 2.81 mm 

P3 75 mm 74.78 mm 

P4 47 mm 36.06 mm 

P5 14 mm 13.83 mm 

P6 58 mm 54.95 mm 

P7 242.47°C 70.61°C 

P11 115.22 MPa 100.02 MPa 

 

 

5  Conclusions 

 

When the HTHPV is closed, the temperature 

around the cooling structure is significantly lower 

than that away from the area due to the existence of 

the cooling structure. The temperature of the area in 

contact with high-temperature air is significantly 

higher than that of the surrounding area. 

The stress distribution of the valve seat is similar 

to that of temperature. The maximum stress appears at 

the center hole of the valve seat, the minimum stress 

appears at the position far away from the center hole, 

and the stress distribution reduces from the center 
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axial direction of the valve seat. The existence of the 

cooling structure causes a stress concentration of the 

valve seat in this area, especially in the root area of 

the upper circular groove and the lower hole, which 

shows that the existence of the cooling structure 

weakens the pressure-bearing capacity of the valve 

seat. 

An optimization method based on cooling 

structure parameters is proposed, which can com-

pletely describe the geometric characteristics of the 

cooling structure and improve cooling performance. 

Through the central composite design method and 

screening optimization method, the influence of var-

ious parameters on the optimization objective is an-

alyzed. P4 (the distance from end face of the lower 

hole to the Z-axis) has the most obvious effect on P7 

(average temperature of the valve seat). P4 (the dis-

tance from end face of the lower hole to the Z-axis) 

and P6 (the distance from the axis of the lower hole to 

the origin of coordinates) have the most obvious ef-

fect on P11 (the average stress intensity of valve seat). 

Finally an optimal design value is proposed in which 

the average temperature of the valve seat can be re-

duced from 242.47°C to 70.61°C and the average 

stress of the valve seat can be reduced from 115.22 

MPa to 100.02 MPa. 
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目 的：风洞系统中高温高压介质会对热阀承压能力产生

显著影响。本文旨在提出基于 MOGA 模型的阀

门阀座参数化设计方法，探讨冷却结构参数对阀

座承压能力和冷却能力的影响规律，建立适应性

结构优化方法，为高温高压阀门设计提供参考。 

创新点：1. 设计了具有优良隔热能力的阀座冷却结构；2.

基于 MOGA 模型提出了阀座冷却结构参数化设

计方法。 

方 法：1.通过理论分析的方式设计具有良好隔热能力的

阀座冷却结构，验证其冷却能力；2. 通过参数化

建模建立阀座冷却结构的几何模型，关联冷却结

构特征参数和几何模型特征；3. 通过仿真模拟进

行参数敏感性分析（图 8），提出基于 MOGA 模

型的阀座冷却结构优化设计方法，建立优化的阀

座冷却结构设计方案。 

结 论：1. 提出的冷却结构设计方法可完整地描述阀座几

何结构的特征；2.阀座冷却结构竖孔的设计深度

和位置对于阀座的应力状态和平均温度具有显

著影响；3.优化后的阀座结构平均温度可从

242.47℃降低到 70.61℃，阀座的平均应力可从

115.22MPa 降低到 100.02MPa。 

关键词：热阀；风洞；应力；结构优化 
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