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Abstract: This research aims to develop an advanced deep learning-based ensemble algorithm, utilizing environmental temperature 

and solar radiation as feature factors, to conduct hourly temperature field predictions for steel-concrete composite decks (SCCDs). The 

proposed model comprises feature parameter lag selection, two non-stationary time series decomposition methods (Empirical mode 

decomposition (EMD) and time-varying filtering empirical mode de-composition (TVFEMD)), and a stacking ensemble prediction 

model. To validate the proposed model, five machine learning (ML) models (random forest (RF), support vector regression (SVR), 

multilayer perceptron (MLP), gradient boosting regression (GBR) and extreme gradient boosting (XGBoost)) were tested as base 

learners and evaluations were conducted within independent, mixed, and ensemble frameworks. Finally, predictions are made based on 

engineering cases. The results indicate that consideration of lag variables and modal decomposition can significantly improve the 

prediction performance of learners, and the stacking framework, which combines multiple learners, achieves superior prediction results. 

The proposed method demonstrates a high degree of predictive robustness and can be applied to statistical analysis of the temperature 

field in SCCDs. Incorporating time lag features helps account for the delayed heat dissipation phenomenon in concrete, while de-

composition techniques assist in feature extraction. 

 

Key words: Steel-concrete composite decks (SCCDs); Temperature field; Time varying filtering based empirical mode decom-

position (TVFEMD); Feature selection; Machine learning. 

 

 

1  Introduction 

 

Steel-concrete composite beam bridges are 

widely used due to their competitive advantages in 

many aspects. They consist of steel girders and con-

crete flange slabs that are joined together using shear 

connectors (Shim et al., 2001). However, the 

non-uniform distribution of temperature across the 

cross-section caused by environmental temperature 

fluctuations can lead to thermal stress, which may 

affect the structural performance and service life of 

such bridges (Wang et al., 2021). It can cause crack-

ing of concrete bridge decks and bending of steel 

girders (Branco and Mendes, 1993; Giussani, 2009), 

ultimately decreasing structural performance and 

posing a threat to structural safety and durability 

(Chen et al., 2023; Luo et al., 2023). Therefore, the 

study of temperature fields in steel-concrete compo-

site beam bridges has received widespread attention. 

The thermal effects of bridges are influenced by 

various meteorological factors, including atmospheric 

temperature and solar radiation (Zhang et al., 2022). 

Much research has been carried out on temperature 

distribution in bridge structures based on meteoro-

logical data, focusing on extreme temperature distri-

bution in different seasonal patterns and the corre-

sponding thermal behavior (Tong et al., 2002; Lee, 

2012). Changes in the structural temperature field can 

lead to alterations in the structural dynamic charac-

teristics which affect the displacement and strain 

responses in Structural Health Monitoring (SHM) 

(Sohn et al., 1999; Innocenzi et al., 2022; Nicoletti et 

al., 2023). Once the service scenario of a bridge 

structure is determined, a thermal load model can 
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typically be established by collecting temperature 

data and conducting statistical analysis (Catbas et al., 

2008). Based on this, further investigation into the 

extreme temperature distribution in different seasons 

and corresponding thermal response behavior can be 

carried out (Zhang, et al., 2022). To obtain the re-

quired temperature data, on-site testing and monitor-

ing are common methods. As SHM systems continue 

to evolve, researchers have proposed temperature 

gradient models for various regions and bridge types 

by collecting data through thermal sensors on bridges 

(Han et al., 2021). However, this method requires a 

sufficiently large sample size, which means that the 

required time cost is high (Zhang et al., 2023). 

Moreover, the maintenance of equipment and data 

loss are also issues that researchers face (Xin et al., 

2023). 

Predicting temperature fields of bridge structures 

under complex environmental conditions is a major 

focus of research. While standard values of temper-

ature effects obtained through long-term measure-

ments and statistical analysis can cover the most ad-

verse temperature patterns during the design period, a 

single temperature gradient model may not adapt well 

to changing meteorological conditions. Some re-

searchers have proposed empirical theoretical for-

mulas based on fitting the relationship between solar 

radiation, wind speed, atmospheric temperature, and 

temperature at different locations on the structure for 

temperature prediction (Qin and Hiller, 2011). How-

ever, the responses of concrete to atmospheric tem-

perature and radiation are not synchronously pro-

duced at different depths and, due to temperature 

hysteresis, the temperature of concrete at other loca-

tions lags behind that of its surface . Moreover, the 

heat transfer coefficient of steel is higher than that of 

concrete, resulting in temperature gradients along the 

height direction of the cross-section. When meteoro-

logical conditions are complex, it is difficult to de-

scribe the heat transfer mode in a simple fitting for-

mula. Finite element (FE) methods are often used for 

simulating temperature fields of bridge structures. 

The Fourier heat transfer equation is an effective tool 

for simulating heat conduction behavior and can be 

used to solve transient analysis of complex tempera-

ture fields with refined FE models and accurately 

calibrated thermal parameters (Zhang et al., 2020). 

However, this method requires significant computa-

tional resources and has low computational efficiency, 

making it challenging to apply it to the analysis of 

massive historical data for temperature load calcula-

tions in design (Fan et al., 2022). With the initial 

exploration of digital twin technology in the field of 

bridges and the development of structural health 

monitoring techniques (Opoku et al., 2021; Broo et al., 

2022), maintenance of large-span bridges is gradually 

moving towards real-time monitoring (Zhao et al., 

2023), requiring a real-time and accurate temperature 

field prediction method (Fu et al., 2022). Some re-

searchers have suggested that future bridge design 

and maintenance decisions should take into account 

climate characteristics (Figueiredo et al., 2023). ML 

methods have become an effective approach to solv-

ing this problem, but only a few studies have been 

devoted to their application in temperature prediction 

of SCCDs (Han, et al., 2021). However, ML methods 

have achieved encouraging results in other engi-

neering fields (Flah et al., 2021; Wedel and Marx, 

2022). 

In summary, accurate prediction of the temper-

ature field in SCCDs under environmental influences 

is fundamental to analyzing their thermal response. 

However, existing methods based on health moni-

toring and numerical simulation have drawbacks such 

as high maintenance costs of equipment and low 

computational efficiency. Additionally, prediction 

methods based on single ML models tend to have 

weak parameter sensitivity or poor generalization 

capabilities. Recognizing these limitations, this paper 

aims to establish a new predictive model for im-

proving the efficiency and accuracy of temperature 

field predictions for SCCDs. In this study, a stacking 

ensemble algorithm was developed for predicting the 

temperature field of SCCDs. The model's data sam-

ples were expanded using a numerical analysis model, 

which was validated with structural health monitoring 

data. Non-stationary time series were decomposed to 

capture input features, and the importance of these 

features was assessed, taking into account the heat 

transfer lag at different positions. Comparative anal-

ysis was conducted on the predictive performance of 

multiple single ML models versus the Stacking model. 

Additionally, the statistical accuracy of temperature 

sample data predicted by the Stacking model was 

evaluated. 
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2  Methodology 

2.1  Numerical temperature field simulation 

Fig. 1 shows that the temperature field of a 

SCCDs can be simulated by inputting various thermal 

parameters and specifying the thermal boundary 

conditions described earlier (Zhang, et al., 2020; 

Sheng et al., 2022). Transient thermal analysis re-

quires time and space discretization, followed by the 

use of a numerical algorithm to obtain a solution. The 

implicit algorithm has a time step that is not limited 

by time stability, resulting in higher calculation ac-

curacy and stability. The solution's efficiency is im-

proved by using Newton's method to solve the non-

linear system of equations at each time step. The 

formulas for heat conduction theory involved in this 

study are shown in Section S1 (Branco and Mendes, 

1993; Narasimhan, 1999; Shi et al., 2022). To solve 

the Fourier heat transfer equation, initial conditions 

must also be defined. The FEM model is processed 

cyclically, with an additional 24-hour cycle, until the 

temperature at each node at the end of the incremental 

step on day n matches the temperature at the end of 

the incremental step on day (n+1). The temperature 

field at the end of the incremental step on day (n+1) is 

then used as the initial temperature field for calcu-

lating the annual temperature field of the numerical 

model. 
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Fig. 1  Numerical simulation flow diagram of the temperature field. 

 

2.2  Feature importance scoring 

Prior to using a ML algorithm, it is frequently 

necessary to perform feature selection. In this study, 

an algorithm based on the decision tree principle was 

used to determine the importance of input features 

(Sugumaran et al., 2007). To analyze the time lag 

effect of ambient temperature on structural tempera-

ture, the importance of different time lag quantities 

can be scored using a ML model with a decision tree 

function in which two methods can be used to calcu-

late the importance of features: the information en-

tropy approach and the Gini coefficient-based ap-

proach. The  information entropy method is based on 

the concept of information gain, which is used to 

measure the contribution of features in the classifica-

tion, while the Gini coefficient method is based on the 

concept of Gini impurity, which is used to measure 

the error rate of features in the classification (Liu et 

al., 2021). 

 

2.3  Decomposition and reconstitution of 

non-stationary time series 

2.3.1 Empirical mode decomposition 

 

The adaptive decomposition of non-linear and 

non-stationary time series into multiple intrinsic 

modal functions (IMFs) and a residual term is 

achieved using EMD, a commonly employed signal 

decomposition method (Boudraa and Cexus, 2007). 

The number of IMFs depends on the time series 

characteristics. For a temperature time series T(t), this 

can be expressed as: 
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where c
i
(t) denotes the i -th IMF component and the

last term is referred to as the residual term. 

2.3.2 Time varying filter-based empirical mode de-

composition 

TVFEMD is a variant of the EMD method that 

constructs a time-varying filter in each local region of 

the original signal to capture the characteristics of 

local frequency modulation (Jamei et al., 2023). The 

time-varying filter is constructed based on local ex-

tremum points, and B-sample interpolation is used to 

smooth the response curve of the filter. This allows 

the signal to be decomposed into multiple intrinsic 

modal functions (IMFs). The steps for implementing 

the TVFEMD method are shown in Section S2 (Xin, 

et al., 2023). 

2.3.3 Sample Entropy 

The Sample Entropy (SE) method is a technique 

proposed for detecting similarity between two dif-

ferent time series (Richman and Moorman, 2000). It 

quantifies the degree of similarity between the time 

series without making prior assumptions about the 

shape of the data distribution. The principle is based 

on comparing the distances between vectors of adja-

cent time points, and thus calculating the value of 

sample entropy, which can be used as a basis for 

recombining the time series components obtained 

from EMD and TVFEMD decomposition. Suppose 

there is a set of time series X = [x(1), x(2),…, x(N)] of 

length N. The steps for calculating the SE value are 

shown in Section S3. 

2.4  ML methods 

2.4.1 Random forest 

The RF algorithm involves training several de-

cision trees independently, each on a different set of 

randomly selected features and data samples, avoid-

ing overfitting and learning different features and 

patterns. RF combines the predictions of all decision 

trees to obtain the final prediction. Classification and 

regression tree (CART) algorithm is usually used to 

train decision trees, where the Gini impurity or in-

formation gain is used as the classification criterion. 

RF improves performance and generalization capa-

bilities by combining the prediction results of multi-

ple decision trees (Liu, et al., 2021). 

2.4.2 Support vector regression 

SVR is based on the principle of support vector 

machines (SVMs). The core idea is to divide the data 

points into two classes by constructing an optimal 

hyperplane such that the distance between the two 

sides of the hyperplane is maximized, i.e. the interval 

is maximized. In SVR, we use the same idea but 

transform the hyperplane into a regression function 

that is used to fit the data points so that the prediction 

error is minimized (Liu, et al., 2021). 

.( )Tw b y x        (2) 

where x represents the feature vector of the input data, 

and ϕ(x) is the transformation of the input data into a 

vector in a high-dimensional space using a mapping 

function. The normal vector of the hyperplane is 

represented by w, and b is the intercept of the hyper-

plane. The corresponding prediction result is denoted 

by y. 

2.4.3 Multilayer perceptron 

MLP is a relatively common type of 

feed-forward neural network used to solve a variety of 

ML problems (Nguyen et al., 2021). MLP typically 

consist of multiple fully connected layers, where each 

neuron is connected to all neurons in the previous 

layer, with certain weights and bias values, and are 

used to compute a linear combination of input data. 

These linear combinations are transformed by the 

activation function and used as input to the next layer, 

which undergoes multiple layers of non-linear trans-

formations to obtain the final output of the model. 

Suppose we have an input vector xR
m
, an output

vector yR
m
, and a set of neurons with weights and

bias values. For the j-th neuron in layer i, its input zi,j 

and output ai,j can be expressed as follows, respec-

tively: 
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where wi,j,k is the weight between the j-th neuron in 

layer i and the k-th neuron in layer i-1, bj
(i)

 is the bias 

of the j-th neuron in layer i, and f is the activation 

function, which can be a Sigmoid function, ReLU 

function, Tanh function, etc. 

 

2.4.4 Gradient boosting regression 

 

GBR is a ML method that utilizes gradient 

boosting trees (GBMs) to solve regression problems 

(Nguyen, et al., 2021). Developed by Friedman, this 

ensemble learning model is designed to create a 

highly accurate strong learner by combining a se-

quence of weak or base learners, each of which per-

forms better than random guessing. The model 

achieves this by adding new weak learners to mini-

mize the total loss (Friedman, 2001). The gradient 

boosting algorithm works in iterations, where each 

iteration adds a new weak learner, typically in the 

form of decision trees, to the model. In the first itera-

tion, the algorithm learns the first weak learner, which 

is the first tree, to reduce the overall training error. In 

the subsequent iterations, the algorithm learns addi-

tional trees to reduce the errors of the previously 

added trees. The algorithm repeats this process until a 

high-quality model is constructed, which typically 

involves minimizing the model's loss, also known as 

the overall error, to a desired level. 

 

2.4.5 Extreme Gradient Boosting 

 

XGBoost is a highly scalable extension of the 

GBMs algorithm, which has been used to handle 

regression tasks (Nguyen, et al., 2021; Wang et al., 

2022). For a data set D=[(x1,y1), (x2,y2),…, (xn,yn)], 

the model is initialized and can be set to the average 

of the training data, as shown in Eq. (5). The specific 

derivation process is presented in Section S4. 
 

(0)

1

.
1

ˆ
n

i i

i

y y
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                              (5) 

 

where xi denotes the feature of the i-th sample, yi is its 

prediction target value, and n is the number of sam-

ples, n is the number of samples in the training dataset, 

yi is the true label of the i-th sample, and 
(0)ˆ
iy  is the 

initial prediction of the i-th sample. 

 

2.4.6 Elastic net 

 

Elastic net method is a linear regression method 

that combines L1 and L2 regularization terms (Zou 

and Hastie, 2005). The L1 regularization term gener-

ates sparsity in the regression coefficients, while the 

L2 regularization term generates smoothness in the 

regression coefficients. Typically, regularization 

methods take the following form: 
 

.argmin { ( ; , ) ( )}L R
w

w X y w                (6) 

 

where L(w;X,y) is the loss function, R(w) is the reg-

ularization term, which is used to control the com-

plexity of the model and avoid overfitting. w denotes 

the parameter vector of the model, X denotes the 

feature matrix of the training data, and y denotes the 

label vector of the training data. α is the regularization 

factor, which is used to control the importance of the 

regularization term. 

Different regularization methods differ in the 

exact form of R(w), but they all have the general form 

described above, and, by adjusting the magnitude of 

the regularization coefficient α, the fit and generali-

zation ability of the model can be balanced. Elastic 

Net is a regularization method based on square loss, 

and the optimal regression coefficient w
*
 in the  

method can be obtained by solving this optimization 

problem as follows: 
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where yi denotes the label value of the i-th sample, xi 

denotes the eigenvector of the i-th sample, w denotes 

the regression coefficient, λ1 and λ2 denote the L1 and 

L2 regularization coefficients, respectively, |·|1 de-

notes the L1 norm, |·|2 denotes the L2 norm. 

 

2.5  Intelligent expert framework establishment 
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2.5.1 Data feature processing 

 

Prior to building a ML model, data prepro-

cessing is necessary. In this study, the main steps of 

preprocessing include calculating time delays using 

the feature importance scoring function based on the 

XGBoost model, feature decomposition using EMD 

and TVFEMD methods, and recombination and di-

mensionality reduction of the decomposed features 

using SE. 

 SCCD’s temperature field data, in addition to 

being influenced by its own structural parameters, is 

also affected by environmental factors such as at-

mospheric temperature and solar radiation. As the 

weather changes, the temperature gradient of the 

structure presents different patterns. For example, on 

sunny days with strong sunlight, the structure presents 

a positive temperature gradient pattern while, when 

the temperature drops significantly, the structure 

presents a negative temperature gradient pattern be-

cause the surface in contact with the air and steel 

beams has a slower heat dissipation rate than other 

areas. The temperature gradient pattern is mainly 

influenced by the ambient temperature. The effect of 

ambient temperature on the structure has a certain 

time delay characteristic due to the different heat 

exchange and dissipation times at different positions. 

Therefore, it is necessary to analyze the influence of 

time lag (Liu et al., 2020). The ambient temperature 

has obvious periodic features that vary with day and 

night and season. However, because the ambient 

temperature is a non-stationary time series, simple 

ML models find it difficult to distinguish trends, pe-

riodicity, or seasonal changes in the sequence. De-

composition of the original sequence is thus neces-

sary to address the issue of increased feature dimen-

sions after decomposition; dimensionality reduction 

methods can be used to recombine some features. By 

combining these methods, the efficiency and accuracy 

of ML can be improved. 

 

2.5.2 Stacking ensemble learning framework 

 

The stacking ensemble learning framework is a 

method that integrates the prediction results of mul-

tiple base learners through a single meta-model. Its 

core principle is to improve prediction accuracy and 

stability by leveraging the complementarity between 

different base models. When using the Stacking en-

semble learning framework, it is necessary to select 

appropriate base models and meta-models, which 

represent a single model for training and prediction 

and a model that incorporates the prediction results of 

a single model, respectively. The selection of base 

models should be based on their predictive ability and 

stability. For the meta-model, its complexity and 

generalization ability should be considered. Here, RF, 

SVR, MLP, GBR, and XGBoost were selected as the 

base models. The Elastic Net model was chosen as the 

meta-model to learn respective features from different 

base models. 

In addition, when using the Stacking ensemble 

learning framework, cross-validation methods are 

used to ensure the performance of the models. Typi-

cally, the k-fold cross-validation method is used to 

divide the dataset into k mutually exclusive subsets. 

Then, each subset is used in turn as the test set and the 

remaining k-1 subsets are used as the training set. The 

resulting model is trained to make predictions, and 

error metrics are calculated. Finally, all the error 

metrics are averaged to obtain the performance 

evaluation metrics of the model. This prevents the 

model from overfitting to a particular training set, 

thus improving its generalization ability. 

The summary of the model-building process is 

as follows: the dataset is divided into a training set 

and a test set. Multiple base models are trained using 

the training set, and multiple predictions are made on 

the test set. The predictions from the base models are 

then used to train a metamodel, which can be used to 

make predictions on the test data. Fig. 2 and Fig. 3 

show the flow chart of the k-fold cross-validation of a 

single model and the framework of the Stacking en-

semble model, respectively. To begin, the data sam-

ples are prepared, and the sample set is divided into a 

training set and a test set. The features are normalized. 

For a single model, such as the base model Model 1, 

the training set is cross-validated in k folds. During 

the cross-validation process, the hyperparameters are 

optimized using the random grid search method. The 

prediction results of the training set, Ptrain,i (i = 1, 2, ..., 

n), and the prediction results of the test set, Ptest,j (j = 

1, 2, ..., n), are recorded in each fold, respectively. 

Then, the Ptrain,i obtained in each fold are combined to 

form a new training set (NewTrain_Model 1), and the 

Ptest,j obtained in each fold are averaged to obtain a 

new NewTest_Model 1). This operation is repeated m 
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times, where m is the number of base models selected. 

As a result, the set of m NewTrain_Model k and 

NewTest_Model k (k =1, 2, ..., m) can be obtained. 

The NewTrain_Model k is trained with the prediction 

labels (Train Set Label) in the training set using the 

metamodel as the input and target values to obtain the 

trained Stacking ensemble model. Finally, the New-

Test_Model k is input to the trained model to obtain 

the final prediction results of the test set. 

 

Train 1

NewTrain_Model 1

···

···

Train 2

Train 3

Train 4

Train 5

Train 1

Ptrain,2

Train n-3

Train n-1

Ptrain,1

Train n-4

Train n-2

Train n-1

Train n-2

Train n-3

Ptrain,1

Ptrain,2

Ptrain,n Train n Train n Ptrain,n

··
··

··

Ptest,n Ptest,2 Ptest,1 NewTest_Model 1

···

Model 5

Model 1

Average

··
··

··
··

··
··

Test Set

Train
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Fig. 2  Single model cross-validation flow chart 
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Fig. 3  Stacking ensemble model framework. 

 

2.5.3 Performance assessment indicators 

 

This study employs three metrics to evaluate the 

predictive performance of machine learning (ML) 

models, including the Mean absolute error (MAE), 

Coefficient of determination (R²), and Root mean 

squared error (RMSE); higher R
2
 value and smaller 

MAE and RMSE values indicate better model pre-

dictions. The above indicators are defined as follows: 
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where n is the number of samples, yi is the measured 

value of the i-th sample data, ŷi represents the pre-

dicted value of the i-th sample data, and ȳ represents 

the average of all sample data. 

 

 

3  Numerical analysis and validation of tem-

perature field 

3.1  Engineering background 

 

A large-span steel truss suspension bridge uti-

lizing SCCDs is considered with a length of 1176 m, a 

height of 7.5 m, a width of 27 m, and a truss node 

spacing of 7.25 m (Wang et al., 2018). The bridge 

deck includes left and right traffic lanes, arranged 

with spaced separation as shown in Fig. 4. The lon-

gitudinal spacing is unevenly arranged according to 

shear resistance requirements. Temperature monitor-

ing sensors are installed at the mid-span, 1/4 span, and 

near the tower section of the bridge, with Sections A 

to E depicted in Fig. 4a. In this study, Section C was 

selected for detailed analysis. The diameter and 

height of the shear connectors are 22 mm and 190 mm 

respectively. In the cross-sectional view of in Fig. 4b, 

three shear connectors are welded onto the top surface 

of each longitudinal steel beam, with a transverse 

spacing of 120 mm. 

A computational model was built using the 

general-purpose FE software ABAQUS. The radia-

tion in shaded areas was implemented using the 

DFLUX interface in ABAQUS. This calculation is 

only necessary for the concrete slab and the steel 

girders on both sides. The process is divided into the 

following steps: First, based on the sun's elevation 

angle, it is determined whether it is day or night, as 

shadow effects on solar radiation are only calculated 

during the day. During daylight, the solar incident 
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angle on each surface of the composite beam is used 

to combine the shadowed and sunlit areas. The top 

surface of the bridge deck is always exposed to solar 

radiation, while the sides are affected by their own 

shadow as the sun's position changes. The steel girder 

web has partially sunlit and shadowed areas, which 

are determined through calculations using Eq. (S7) 

(Zhang, et al., 2020; Fan et al., 2021). The bottom 

surface of the bridge deck and the bottom flanges of 

the steel girders do not receive direct solar radiation 

and are therefore not included in the shadow recog-

nition calculation. Finally, the process ends once all 

the calculations are completed. A two-dimensional FE 

transient heat transfer analysis was conducted, ig-

noring temperature differences along the longitudinal 

direction of the girder segments. The dimensions of 

the computational model as well as the mesh division 

are shown in Fig. 4b. The composite beam consists of 

three parts: asphalt concrete, concrete, and steel beam, 

all simulated using four-node quadrilateral heat 

transfer elements (DC2D4) (Wang, et al., 2021). The 

different materials are bonded to each other by tie 

constraints to ensure temperature and heat flow den-

sity transfer between the different material interfaces. 

In this study, the FE calculation verification was 

performed using the c1 and c2 measuring points in 

Fig. 4b as examples. 
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Fig. 4. Engineering background: (a) overall diagram of suspension bridge; (b) cross-sectional dimensions and FE model of 

the SCCDs. 

 

In this study, the temperature field of the bridge 

site was simulated for the entire year of 2013, and 

temperature data was sampled on an hourly basis. 

Hourly temperature and radiation data in the vicinity 

of the bridge site are given in Fig. 5 which could be 

determined by means of the atmospheric temperature 

data of local weather stations 

(https://www.cma.gov.cn/). The boundary conditions 

and calculation parameters required for the calcula-

tions are provided in Table S1. The longitude and 
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latitude of the bridge site location are E109.610° and 

N28.333°, respectively, and the elevation is 571.1m. 

The ground reflectance (re) used to calculate the re-

flected radiation was taken to be 0.2. Each surface has 

a different angle of incidence with respect to the solar 

radiation and therefore receives a different type of 

radiation, including direct radiation (Rd), diffuse ra-

diation (Rs), and reflected radiation (Rr). The paren-

theses in Table S1 indicate that the type of radiation 

received by the sides of the steel web and the top 

surface of the lower flange need to be calculated by 

combining the shaded lengths in Eq. (S8) and Eq. 

(S9). 
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Fig. 5. Hourly temperature and radiation parameters: (a) 

temperature; (b) radiation 

 

3.2  Validation of the temperature field calculation 

method 

 

According to the calculation method described 

in Fig. 1, it is possible to simulate the temperature 

field of the SCCDs under sunlight radiation. To en-

sure the accuracy of the FE simulation results, actual 

measurement data from points c1 and c2 in Fig. 4b 

were selected, and the calculated hourly temperature 

results were verified. Fig. S2 shows a comparison 

between the calculated values from the finite element 

model and the actual measured values during some 

periods in winter and summer. It can be seen that the 

data obtained through the simulation are consistent 

with the actual measurement data, with a certain de-

viation at some moments but within the tolerance 

range. The above calculation method can better sim-

ulate the time-varying temperature field of the struc-

ture under sunlight. It proves that the temperature 

analysis model established above can be used to de-

velop the following analyses. 

 

 

4  Results assessment and discussion 

4.1  Feature preprocessing analysis 

 

The annual temperature data samples obtained 

from the numerical temperature field simulations 

were used to build a prediction model for the tem-

perature field of the SCCDs based on the 

TVFEMD-Stacking ensemble algorithm. As men-

tioned earlier, three additional stages of 

pre-processing of the time series were required before 

the model could be built. Firstly, the lagging terms of 

the data features were analyzed using XGBoost's 

feature-importance scoring. Then, each feature was 

decomposed using two effective data decomposition 

techniques, namely EMD and TVFEMD, to provide 

suitable data for ML to be built. Finally, the decom-

posed feature was restructured and dimensionality 

reduced using the sample entropy method. 

As the FE model contains many nodes, only five 

representative nodes are chosen to analyze the middle 

I-beam. These selected nodes are positioned at dif-

ferent locations, including the asphalt concrete layer, 

the center of the concrete slab, the steel-concrete joint, 

and the middle and bottom of the steel beam, respec-

tively. For ease of reference, they are named M1 to 

M5 from top to bottom, as shown in Fig. 6. It should 

be noted that the temperature data of only these five 

measurement points is analyzed in this study to better 

illustrate the specific analysis steps. However, the 

research method used in this study is applicable to any 
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location within the entire cross-section. 

 

M1~M5

 

 

 
Fig. 6. Study subjects M1 to M5 

 

The XGBoost method was used to analyze the 

influence of the atmospheric temperature lag term on 

each measurement point. Here, t represents the actual 

temperature sequence, and t-n (n = 1, 2, ..., 6) indi-

cates a lag of n hours on the original basis. The results 

of each time lag characteristic score for measurement 

points M1 to M5 were calculated and are shown in 

Table 2. From the data in the table, it can be observed 

that the measurement points are slightly affected by 

the temperature lag due to their different spatial lo-

cations. M3, which is located at the junction of the 

section, is affected by the temperature at moment t-1, 

while M2, located inside the concrete, is affected by 

the temperature value at moment t-3. The other 

measurement points are closer to the contact surface 

with the air and are therefore directly affected by the 

ambient temperature at moment t. To take into ac-

count the significance of features across various lo-

cations, ambient temperature input variables includ-

ing t, t-1, and t-3 were selected in addition to the input 

values including radiation data and time series. The 

raw data samples were divided in a 7:3 ratio and set as 

the training and validation sets, respectively. Differ-

ent features were transformed into the same scale 

through standardization to avoid the differences in 

values between different features. 

 

Table 2 Feature importance scores based on the XGBoost 

model 

 t t-1 t-2 t-3 t-4 t-5 t-6 

M1 0.59  0.28  0.03  0.01  0.01  0.01  0.01  

M2 0.00  0.00  0.04  0.74  0.22  0.00  0.01  

M3 0.03  0.93  0.03  0.00  0.00  0.00  0.01  

M4 0.67  0.33  0.00  0.00  0.00  0.00  0.00  

M5 0.67  0.33  0.00  0.00  0.00  0.00  0.00  

 

The decomposition of features can better handle 

the mixed patterns of non-stationary time series and 

extract the more important variables. However, an 

increase in the number of components obtained after 

decomposition may increase the dimensionality of the 

features, resulting in an increase in the time required 

for the TVFEMD model prediction and in computa-

tional cost. Therefore, the obtained IMF 1 through n 

are combined to obtain new components (Sub 1, Sub 

2, ... , Sub m). As an example, the ambient tempera-

ture of the training set was decomposed using EMD 

and TVFEMD, and the results of recombination after 

decomposition are shown in Fig. 7. 
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Fig. 7. Results of recombination after decomposition of 

ambient temperature sequences: (a) EMD; (b) TVFEMD 

 

The choice of hyperparameters has a significant 

impact on the prediction efficiency of the model. To 

set more optimal hyperparameters, commonly used 

methods include random search, Bayesian optimiza-

tion, and random grid search. In this section, sto-

chastic grid search is used to optimize the model 
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hyperparameters in conjunction with the 

cross-validation shown in Fig. 2. The optimized hy-

perparameter settings are presented in Table S2. In the 

table, "Original", "Time lag-based", "EMD-based", 

and "TVFEMD-based" represent models without time 

lag, models with time lag, models with time lag and 

EMD decomposition, and models with time lag and 

TVFEMD decomposition, respectively. 

 

4.2  Single model forecasting analysis 

After processing the input features, the temper-

ature values of the combined SCCDs can be predicted. 

As an example, using the XGBoost model (without 

hyperparameter tuning), the prediction results for the 

M2 and M3 measurement points with a lag term of 1 

and 2, respectively, are shown in Table 4. The table 

presents results both with and without the time lag 

term being taken into account. Based on the data in 

the table, it can be observed that the errors in M2 and 

M3 are significantly reduced by the addition of the lag 

term. Therefore, it is necessary to consider the effect 

of the time lag term on the temperature field of the 

SCCDs at different locations. 

 

Table 4 Assessment of the impact of model time lags 

 
Original Time lag-based 

R2 MAE RMSE R2 MAE RMSE 

M1 0.90 2.24 2.94 0.95 1.54 2.05 

M2 0.84 2.52 3.08 0.94 1.63 2.09 

M3 0.96 1.18 1.16 0.99 0.56 0.71 

M4 0.99 0.38 0.44 0.99 0.38 0.44 

M5 0.99 0.50 0.41 0.99 0.50 0.41 

 

Furthermore, it is important to note that the M2 

measurement point has a relatively large time lag, and 

its temperature changes are more complex. Therefore, 

its prediction accuracy has more room for improve-

ment compared to the other measurement points. To 

improve the prediction accuracy of the M2 meas-

urement point, the steady-state time series decompo-

sition was used, taking into account the effect of 

temperature time lags. The prediction results for dif-

ferent single models are shown in Table S3, including 

the R
2
, MAE, and RMSE results for the Original 

model, the Time lag-based model, the EMD-based 

model, and the TVFEMD-based model, respectively. 

The results in Table S3 indicate that different 

models exhibit varying performance under different 

data processing methods. The TVFEMD decomposi-

tion-based data processing method performs better for 

most of the models, with the TVFEMD-XGBoost 

model and the TVFEMD-GBR model demonstrating 

higher prediction accuracy, achieving R
2
 values of 

0.97 for both models. Among these, the former has 

the lowest MAE (R
2
 = 0.97, MAE = 0.96, RMSE = 

1.24), while the latter has the lowest RMSE (R
2
 = 0.97, 

MAE = 0.98, RMSE = 1.23). The performance of the 

SVR method was poor in the original data and Time 

lag-based data processing methods. However, by 

considering the time lag combined with the TVFEMD 

decomposition, the performance of each model was 

significantly improved. Even the SVR model, which 

had the worst prediction accuracy, could be improved 

from an R
2
 of 0.86 to one of 0.95 through the 

TVFEMD decomposition. Moreover, the MAE and 

RMSE could be reduced from 2.27 and 2.86 to 1.45 

and 1.80, respectively. These results demonstrate that 

the proposed method of considering time lag com-

bined with TVFEMD decomposition is an effective 

way of improving the temperature prediction effect 

using a temperature prediction model. 

 

4.3  Stacking ensemble model prediction 

The fundamental principle of ensemble learning 

is to combine multiple models or algorithms to im-

prove overall predictive performance. To enhance the 

diversity and prediction accuracy in stacking ensem-

ble learning, the RF, SVR, MLP, GBR, and XGBoost 

models were used as base learners, combined with the 

Elastic Net model as a meta-learner. The Stacking 

integration prediction model was built using the 

framework shown in Fig. 3. The R
2
, MAE, and RMSE 

results of the stacking ensemble models are presented 

in Table S4. The results show that the Stacking, Time 

lag-Stacking, EMD-Stacking, and 

TVFEMD-Stacking models have R
2
 values of 0.91, 

0.96, 0.97, and 0.98, respectively. It is worth noting 

that the TVFEMD-Stacking model outperformed the 

single model, with the highest prediction accuracy (R
2
 

= 0.98, MAE = 0.79, RMSE = 1.01). 

 

Une
dit

ed



|  J Zhejiang Univ-Sci A (Appl Phys & Eng)   in press 12 

0 10 20 30 40
0

10

20

30

40

R2 = 0.89         R2 = 0.95

MAE = 2.11    MAE = 1.40

RMSE = 2.66  RMSE = 1.79

 RF

 Timelag-RF

 1:1 Line

P
re

d
ic

te
d

 t
em

p
er

at
u

re
 (
℃

)

Target temperature (℃)  

0 10 20 30 40
0

10

20

30

40

R2 = 0.86         R2 = 0.94

MAE = 2.27    MAE = 1.40

RMSE = 2.86  RMSE = 1.84

 SVR

 Timelag-SVR

 1:1 Line

P
re

d
ic

te
d

 t
em

p
er

at
u

re
 (
℃

)
Target temperature (℃)  

0 10 20 30 40
0

10

20

30

40

R2 = 0.87         R2 = 0.94

MAE = 2.19    MAE = 1.63

RMSE = 2.75  RMSE = 2.09

 MLP

 Timelag-MLP

 1:1 Line

P
re

d
ic

te
d

 t
em

p
er

at
u

re
 (
℃

)

Target temperature (℃)  
(a) (b) (c) 

0 10 20 30 40
0

10

20

30

40

R2 = 0.88         R2 = 0.95

MAE = 2.16    MAE = 1.34

RMSE = 2.68  RMSE = 1.68

 GBR

 Timelag-GBR

 1:1 Line

P
re

d
ic

te
d

 t
em

p
er

at
u

re
 (
℃

)

Target temperature (℃)  

0 10 20 30 40
0

10

20

30

40

R2 = 0.89         R2 = 0.95

MAE = 2.06    MAE = 1.32

RMSE = 2.54  RMSE = 1.72

 XGBoost

 Timelag-XGBoost

 1:1 Line

P
re

d
ic

te
d

 t
em

p
er

at
u

re
 (
℃

)

Target temperature (℃)  

0 10 20 30 40
0

10

20

30

40

R2 = 0.91         R2 = 0.96

MAE = 1.85    MAE = 1.20

RMSE = 2.34  RMSE = 1.51

 Stacking

 Timelag-Stacking

 1:1 Line

P
re

d
ic

te
d

 t
em

p
er

at
u

re
 (
℃

)

Target temperature (℃)  
(d) (e) (f) 

Fig. 8. Predicted temperature and target temperature scatter correlation plots (Original model and Time lag-based): (a) 

RF; (b) SVR; (c) MLP; (d) GBR; (e) XGBoost; (f) Stacking 
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Fig. 9. Predicted temperature and target temperature scatter correlation plots (EMD-based and TVFEMD-based): (a) RF; 

(b) SVR; (c) MLP; (d) GBR; (e) XGBoost; (f) Stacking 
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Fig. 8 displays the scatter correlation plot be-

tween the predicted and target values, combining the 

prediction results of the Original model and the time 

lag-based model. It can be observed that the scatter 

distribution of the prediction results of the Original 

model with respect to the target value is more dis-

persed, while the prediction results of the Time 

lag-based model are closer to the scatter distribution 

of the target value and have a better correlation. This 

suggests that considering the time lag can improve the 

prediction accuracy of the model. Fig. 9 combines the 

prediction results of the EMD-based model and the 

TVFEMD-based model to give a scatter correlation 

plot between the predicted and target values. Both 

decomposition-based models have a more concen-

trated scatter distribution with a better correlation 

between the prediction results and the target values. 

This indicates that the decomposition-based models 

can capture the characteristics of temperature varia-

tion more accurately and thus improve the prediction 

accuracy. 

The Taylor diagram was used to comprehen-

sively compare the predictive performance of the 

models (Taylor, 2001). It is a graph that allows for the 

assessment of the similarities and differences between 

model outputs and observations, incorporating both 

the R
2
 and RMSE metrics and adding the standard 

deviation (SD) between the output and target values 

for a more comprehensive evaluation. Based on Fig. 

10a, it can be observed that the results of both the 

Original and Time lag-based models lie outside the 

arc of RMSE = 2, indicating relatively large predic-

tion errors. In contrast, the results of most of the 

models lie between the arcs of 2 and 4, suggesting 

relatively small prediction errors. Although the Time 

lag-Stacking model shows high accuracy for R
2
 and 

RMSE, it is far from the target value in terms of 

standard deviation, indicating its predictions are more 

dispersed. On the other hand, according to Fig. 10b, 

the EMD-based and TVFEMD-based models show 

mostly clustered predictions on the arc of RMSE = 2, 

indicating relatively small prediction errors. The re-

sults of the TVFEMD-Stacking model are within the 

arc, with better standard deviation predictions, im-

plying better performance in predicting temperature 

characteristics. Therefore, decomposition-based 

models exhibited better performance in predicting the 

temperature of the SCCDs. 
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GBR
GBR

 
（a）                                        (b) 

Fig. 10. Temperature prediction and target value Taylor diagram: (a) Original and Time lag-based; (b) EMD-based and 

TVFEMD-based 

 

To further compare the prediction errors of EMD 

and TVFEMD with the target values, the relative error 

distribution characteristics between the two models' 

predicted values and target values were compared. 

The upper quartile (Q75%), median, lower quartile 

(Q25%), mean, and interquartile range (IQR) of the 

relative error between the predicted values and target 

values of the EMD-based and TVFEMD-based mod-

els were calculated and are presented in Fig. 11 and 

Table S5. It was found that the stacking models based 

on EMD and TVFEMD had better performance 

compared to other models. Specifically, the median 

relative error of the EMD-Stacking model was -0.46, 

which was closer to 0 than the result of the 

TVFEMD-Stacking model (-0.58). However, the 

TVFEMD-Stacking model had a lower mean relative 
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error, and a smaller IQR, indicating a more concen-

trated error distribution, and a closer proximity to 0. 

Therefore, overall, the TVFEMD-Stacking model 

demonstrated better performance in temperature pre-

diction accuracy. 
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Fig. 11. Relative error box plot 

 

4.4  Statistical analysis of temperature samples 

 

To carry out studies such as reliability analysis of 

bridge structures, statistical analysis of their temper-

ature characteristics is usually required. Therefore, 

the prediction results of the ML model should be able 

to describe the statistical characteristics of the actual 

temperature. Fig. 12 provides an empirical probability 

density plot of the prediction results for the 

EMD-based model and the TVFEMD-based model. It 

can be observed that the distribution characteristics of 

the prediction results differ significantly from the 

target values before the input characteristics of the 

model are processed. However, by considering the 

amount of time lag and performing the TVFEMD 

decomposition, the distribution of the empirical 

probability density function is very close to the target 

value. Furthermore, Fig. 13 presents the empirical 

cumulative probability density distribution of the 

TVFEMD-based model, which indicates that the 

TVFEMD-Stacking model has a better prediction and 

the smallest error from the target value. 
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Fig. 12. Comparison of empirical probability density plots: (a) EMD-based; (b) TVFEMD-based 
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Fig. 13. Comparison of cumulative probability density plots of experience: (a) EMD-based; (b) TVFEMD-based 
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The temperature distribution characteristics of 

the actual values and the predictions of the 

EMD-Stacking and TVFEMD-Stacking models can 

be modeled using a Gaussian mixed distribution 

probability model represented by Eq. (11), and the 

fitting results are presented in Fig. 14.  
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          (11) 

 

where n is the number of Gaussian components, wi is 

the weight of the i -th component, μi and σi are the 

mean and standard deviation of the i -th component, 

respectively. The optimal number of Gaussian com-

ponents n for the fit is obtained by calculating the 

lowest value of the Akaika information criterion (AIC) 

and the Bayesian information criterion (BIC). 
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(b) 
Fig. 14. Prediction and target value distribution fitting 

results: (a) EMD-based; (b) TVFEMD-based 

 

The goodness of fit was assessed using the 

Kolmogorov-Smirnov (KS) test by comparing the 

empirical distribution function (ECDF) of two sam-

ples to determine whether they come from the same 

overall distribution (Wang et al., 2020). The null 

hypothesis of the KS test is that the samples come 

from the same overall distribution, while the alterna-

tive hypothesis is that they come from different 

overall distributions. The fitted probabilistic model 

parameters and the results of the goodness-of-fit tests 

are presented in Table S6, which also includes the 

RMSE values of the CDF and PDF between the fitted 

probabilistic model and the sample values. 

After comparison, the optimal number of com-

ponents i is 3 for all cases. Based on the analysis of 

the fitted Gaussian mixed distribution probability 

models and the results of the goodness-of-fit tests, it 

can be concluded that both the EMD-Stacking model 

and the TVFEMD-Stacking model provide good 

predictions of the temperature distribution, as their 

fitting functions overlap with the actual values and the 

KS tests are accepted. However, the 

TVFEMD-Stacking model performs slightly better in 

terms of describing the probability distribution of the 

actual temperature, as indicated by the lower RMSE 

of PDF and CDF compared to the EMD-Stacking 

model. Therefore, it can be concluded that the 

TVFEMD-Stacking model is the better choice for 

predicting the temperature distribution of the SCCDs. 

 

 

5  Conclusions 

 

The TVFEMD-Stacking method proposed in this 

paper combines actual measurements and FE analysis 

with ML techniques, demonstrating good predictive 

performance by considering time lag and 

non-stationary time series features to improve pre-

diction accuracy. Based on experimental verification 

and finite element analysis, a TVFEMD-based 

Stacking ensemble prediction model was developed 

by optimizing hyperparameters for BP, SVR, MLP, 

GBR, and XGBoost models. The main conclusions 

are as follows: 

1. The FE model was validated by on-site mon-

itoring, which accurately calculated the temperature 

field of SCCDs under solar radiation. A single ML 

model prediction method can be developed based on 

FE data. The prediction accuracy was relatively low, 

with the SVR model performing the worst (R
2 

= 0.86, 
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MAE = 2.27, RMSE = 2.86). 

2. The predictive performance of a total of 20 

models, which include four scenarios: considering no 

time delay, considering time delay, considering time 

delay and EMD, and considering time delay and 

TVFEMD. Each, combined with five individual ML 

models, was evaluated. The results show that con-

sidering time delay and input features from empirical 

mode decomposition can effectively improve the 

predictive accuracy of individual models.  

3. The models that combined time lag and fea-

ture decomposition had higher prediction accuracy. 

Among them, the TVFEMD-GBR model and 

TVFEMD-XGBoost model had relatively higher 

prediction accuracy, with evaluation indicators of (R
2
 

= 0.97, MAE = 0.98, RMSE = 1.23) and (R
2
 = 0.97, 

MAE = 0.96, RMSE = 1.24), respectively. 

4. The stacking ensemble models based on EMD 

and TVFEMD can both further improve the predic-

tion performance of the single ML model. The pre-

dicted distribution of TVFEMD-Stacking is the 

closest to the fitted distribution of the target values, 

with a difference in RMSE between the probability 

density function and cumulative distribution function 

of 0.0014 and 0.0043, respectively. 

5. The model proposed here is highly accurate 

and can be used for rapid prediction of the tempera-

ture distribution of SCCDs under environmental in-

fluences. The content of this study can provide a ref-

erence for further analysis of temperature gradients 

over long service lifecycles, as well as real-time 

analysis of thermal deformation behavior and ther-

mally induced strains. 
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中文概要 

 

题 目：基于 TVFEMD-Stacking 集成算法的钢-混凝土组

合桥面板温度场预测 
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目 的：钢-混组合桥面系在环境作用下的温度场精确预测

对保证大跨度悬索桥使用安全具有重要意义。但

现有基于健康监测及数值模拟的方法存在设备

维护成本较高和计算效率低等缺陷，而基于单一

机器学习模型的预测方法对参数敏感性较弱或

泛化能力较差。本文期望通过时变经验模态分解

对输入参数进行处理，并与 Stacking 集成算法结

合建立一种新的预测模型，以提高钢-混组合桥面

系温度场的预测效率及精度。 

创新点：1. 通过健康监测数据与数值模拟相结合的方法建

立温度场数据库；2. 使用时滞量分析及时变经验

模态分解方法进行特征工程从而提提高预测精

度；3. 建立一种基于 Stacking 集成学习的温度场

预测模型。 

方 法：1. 以某大跨度悬索桥钢-混组合桥面系为工程背

景，在健康监测数据验证数值分析模型的基础

上，形成温度场数据库；2. 通过特征参数滞后分

析及时变经验模态分解（TVFEMD）预先对输入

特征进行处理，以针对性解决传热性差异及非平

稳时间序列特征的问题；3. 选用随机森林（RF）、

支持向量回归（SVR）、多层感知器（MLP）、梯

度增强回归（GBR）及极限梯度增强回归

（XGBoost）四种机器学习模型作为基学习器，

Elastic Net 模型作为元学习器，建立 Stacking 集

成学习模型；4. 采用上述单一模型及集成模型对

比分析输入参数滞后处理及参数特征分解对模

型预测精度的影响，通过泰勒图、误差分析、预

测结果统计分析多方面评价模型精度及泛化能

力。 

结 论：1. 考虑时滞量和时变经验模态分解对输入特征进

行处理可以有效提高单个机器学习模型的预测

精度，Stacking 集成算法能使预测误差得到进一

步降低；2. TVFEMD-Stacking 预测结果的统计参

数与目标值吻合较好，可为进一步的温度场概率

分析、长寿命周期下的温度梯度分析以及温度效

应研究提供参考。 

关键词：钢-混组合桥面板；温度场；时变经验模态分解；

特征选择；机器学习 
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