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Abstract: Advances in intelligent shield machines reflect an evolving trend from traditional tunnel boring machines to tunnel 

boring robots. This shift aims to address the challenges encountered by the conventional shield machine industry arising from 

construction environments and manual operations. This study presents a systematic review of intelligent shield machine tech-

nology, with a particular emphasis on its smart operation. Firstly, the definition, meaning, contents, and development mode of 

intelligent shield machines are proposed. The development status of the intelligent shield machine and its smart operation are then 

presented. After analyzing the operation process of the shield machine, an autonomous operation framework considering both 

stand-alone and fleet levels is proposed. Challenges and recommendations are given for achieving autonomous operation. This 

study offers insights into the essence and developmental framework of intelligent shield machines so as to propelling the ad-

vancement of this technology. 

Key words: Intelligent shield machine; Tunnel boring machine; Intelligent tunneling robot; Self-driving; Autonomous control; 

Shield machine; TBM; Intelligent TBM 

1  Introduction 

A shield machine is a large and complex 

engineering equipment used for tunnel construction. 

It combines optical, mechanical, electrical, and 

hydraulic systems, and belongs to the category of 

full-face tunnel boring machines (TBMs), as depicted 

in Fig. 1. The shield machine enables automatic and 

mechanized tunnel excavation, muck removal, and 

lining operations by cooperative subsystems under 

the cover of a steel shield. Compared to traditional 

tunneling methods such as open excavation, 

cut-and-cover excavation and drilling-and-blasting 

methods, the shield method has numerous advantages, 

such as fast tunneling speed, high geological 

adaptability, high safety, high automation, low labor 

intensity, and minimal impact on the construction 

ground. Therefore, it has become the primary method 

for modern tunnel construction. Over the past few 

decades, significant development has been achieved 

in this field. Nevertheless, as modern tunnels progress 

towards higher efficiency, smart construction, 

super-large diameter, super-deep burial, and 

super-long distance, the traditional shield machine 

industry confronts immense challenges arising from 

the construction environment and manual operations. 

The construction environment of shield 

machines is highly complex from a geological 

standpoint. In engineering practice, geological 

conditions are primarily obtained from the results of 

geological exploration conducted prior to tunnel 

construction. The distance between sampling 

boreholes for exploration can vary from several tens 

to hundreds of meters, and the geological information 

between sampling boreholes is highly uncertain. 

Moreover, the space available for geological 

detection in front of the shield is extremely limited, 

making it difficult to obtain precise geological 

information using conventional geophysical detection 
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methods. These limitations make it difficult to 

guarantee construction safety and efficiency. 

From an operational perspective, the use of a 

shield machine involves a complex interaction 

between humans, the machine, and the environment. 

In the case of a slurry pressure balance (SPB) shield 

machine, there are dozens of variables that need to be 

monitored and controlled by the operator. These 

parameters are not only numerous, but they are also 

interdependent, making it challenging to adjust each 

subsystem's parameters. For example, adjusting the 

advance speed requires consideration of the current 

thrust force and cutter-head speed, while adjusting the 

thrust force has to take into account the advance speed 

and the attitude deviation from the designed tunnel 

axis. Additionally, the adjustment of the slurry 

chamber pressure needs consideration of the 

cutter-head and the advance speed. Consequently, the 

operator's decision-making process is considerably 

complicated. This complexity requires operators to 

undergo extensive training and to accumulate a 

significant amount of experience in actual projects 

before becoming qualified. Also, since human 

operation mainly relies on experience and is 

subjective, the level of operation proficiency varies 

from operator to operator. Due to the complexity of 

the operation, operational errors are prone to occur, 

some of which may cause serious accidents. 

The complexity and uncertainty of the 

geological environment surrounding shield 

construction, as well as the intricate 

human-machine-environment interaction, present 

significant challenges for ensuring the safe and 

efficient operation of shield machines. These 

challenges are manifested in the following aspects: 

(1) Insufficient Autonomous Adaptability: 

Shield tunneling involves severe working conditions 

such as strong impact loads, a wide working range, 

and complex and ever-changing geology with a high 

degree of uncertainty. Shield machines still lack the 

ability to sense and self-adjust to the environment and 

working conditions. This limits the further promotion 

and application of shield construction methods. 

(2) Limited Human-Machine Cooperation and 

Intelligence: The adjustment of operational 

parameters in shield tunneling still   relies heavily on 

the experience of human operators. Unfortunately, the 

theory of optimal decision-making and intelligent 

control of shield machines is not yet mature. As a 

result, when faced with strata changes or complex 

geological conditions, it is difficult for human 

operators to make timely and effective adjustments to 

operation parameters and control strategies. This lack 

of cooperation and intelligence results in a slower 

 
Fig. 1  Shield machines 
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tunneling speed and increased safety risks, with 

similar accidents occurring repeatedly in shield 

machine construction. 

(3) Inadequate Coordination Between Multiple 

Subsystems: Shields are complex systems that are 

coupled with multiple subsystems. The mechanisms 

of these subsystems are complex, and the working 

performance of the entire machine is often not fully 

utilized. This lack of coordination between 

subsystems reduces the efficiency of tunneling, 

leading to longer construction time and higher costs. 

Moreover, the operation of shield machines 

involves repetitive pattern working cycles that consist 

of excavation, segment assembly, and grouting. 

Long-term and high-intensity repetitive tasks can 

easily lead to personnel fatigue and negatively impact 

the physical and mental health of operators. As 

tunneling is often carried out in remote areas far from 

cities, young people are increasingly hesitant to 

engage in such work. Additionally, the high cost of 

training experienced shield operators, the shortage of 

personnel, and rising labor costs have become 

common problems in the industry. 

These challenges present significant obstacles to 

expanding the application range, construction speed, 

construction quality, and safety of shield machines. 

As a result, there is a growing need for intelligent 

shield machines that can operate intelligently, adapt 

to changing geological conditions, and improve 

construction efficiency and safety. Fortunately, in 

recent years, computing power has increased 

significantly, and new sensing technologies continue 

to emerge. In particular, artificial intelligence and 

deep learning have made significant strides, and the 

development of these enabling technologies has 

paved the way for the emergence and evolution of 

intelligent shield machines. 

Intelligent shield machines are also referred to as 

unmanned, automated, self-driving, or autonomous 

shield machines. Recently, several shield machine 

manufacturers and research teams such as MMC 

Gamuda Corporation in Malaysia, Shanghai Tunnel 

Engineering Corporation, and China Railway 

Engineering Equipment Group have achieved 

remarkable progress in the field of intelligent shield 

machines. Several intelligent shield machine 

functionalities have already undergone engineering 

validation. In 2019, the Malaysian contractor MMC 

Gamuda developed a plug-and-play autonomous 

TBM operating system and deployed it on 10 TBMs 

manufactured by Herrenknecht of Germany. These 

advanced TBMs were employed in the construction 

of Kuala Lumpur's second mass rapid transit line 

tunnel, spanning 13.5 kilometers. This system 

possesses the capability to steer the TBM, regulate air 

bubble pressure, and control its advance speed, 

among other functions. According to publicly 

available information (Gamuda, 2022), this system 

can maintain the TBM's alignment within a 

remarkable ±20 mm deviation from the designed 

tunnel axis, surpassing the ±50 mm deviation 

observed in human-operated TBMs. In 2022, the 

Shanghai Tunnel Engineering Corporation in China 

developed an autonomous earth pressure balance 

(EPB) shield machine named "Zhiyu" (Hu et al., 

2022). The Zhiyu shield was successfully utilized in 

tunnel construction projects within clayed soil 

sections in China. It has been confirmed that the 

cumulative ground settlement caused by the Zhiyu 

shield is remarkably controlled, ranging from －18.66 

to －5.92 mm, which is superior to the －27.98 to －

8.81 mm observed during human-operated shield 

machine operations. Undoubtedly, driven by 

intelligent technology, the new generation of 

intelligent shield machines are gradually evolving 

from tunnel boring machines into tunnel boring 

robots (TBRs) (Zhang et al., 2023).  

There are numerous exciting benefits associated 

with intelligent shield machines. Firstly, they enhance 

efficiency and productivity by reducing the number of 

workers required for tunneling operations. These 

machines can operate autonomously, enabling them 

to work continuously without breaks or rest periods. 

Secondly, they contribute to improved safety by 

minimizing the risk of accidents and injuries to 

workers. Operating autonomously allows these 

machines to handle hazardous environments, such as 

areas with high dust or gas levels, without putting 

workers at risk. Thirdly, intelligent shield machines 

enhance the quality of tunneling operations by 

minimizing potential human errors. Their 

autonomous operation enables them to perform tasks 

with exceptional accuracy and precision, leading to 

higher quality outcomes. Fourthly, they play a role in 

reducing the cost of tunneling operations by cutting 

down on labor requirements and increasing overall 
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efficiency. The ability to operate autonomously 

allows them to work faster and more effectively, 

resulting in cost savings for tunneling projects. 

Finally, the development of intelligent shield 

machines fosters innovation and research in the 

tunneling and construction field. Significant 

investments in research and development are required, 

leading to the emergence of new technologies and 

innovations applicable to other areas of construction 

and infrastructure development. Ultimately, the 

advancement and implementation of intelligent shield 

machines have the potential to revolutionize the 

tunneling and construction industry, offering 

significant advantages in terms of efficiency, safety, 

quality, cost-effectiveness, and overall innovation. 

Meanwhile, it is crucial to acknowledge that the 

research on intelligent shield machines is still in an 

early phase. The realization of fully autonomous 

shield machines remains a significant challenge, 

necessitating much further research. During the 

ongoing research and development of intelligent 

shield machines, various questions have emerged, 

including the following: 

• What is the general definition of an intelligent 

shield machine? 

•  What is the current development status of 

intelligent shield machines? 

•  How can autonomous operation be achieved? 

•  What are the primary technical challenges in 

achieving autonomous operation? 

In order to address these questions, this study 

presents a comprehensive view of the intelligent 

shield machine, with a particular focus on its smart 

operation. This study is organized as follows. Section 

2 introduces the fundamental aspects of intelligent 

shield machines, encompassing their definition, 

meaning, contents, development mode, and current 

development status. In Section 3, the state-of-the-art 

smart operation technology is thoroughly reviewed. 

Section 4 puts forth an autonomous operation 

framework, considering both standalone and shield 

machine fleet levels. Section 5 addresses the 

challenges encountered in achieving autonomous 

operation and offers relevant research 

recommendations. Finally, concluding remarks are 

presented in Section 6. 

The latest literature review techniques can 

provide a comprehensive and in-depth understanding 

of technological advances within a specific field, and 

good examples of these methods are demonstrated in 

the references (Mourtzis, 2020; Mourtzis et al., 2022). 

However, due to the distinctive characteristics of 

intelligent shield machines and their status as a 

recently emerging technology, the literature is 

scattered across the specific functionalities of these 

machines. As a result, the literature review part of this 

study is structured around the fundamental aspects of 

shield machine intelligence and its smart operation. 

To comprehensively explore all aspects of research 

on intelligent shield machines, we began by clustering 

the literature based on their titles and abstracts. 

Subsequently, we meticulously fine-tuned the 

literature classifications through in-depth readings of 

the full texts. 

 

 

2  Fundamental issues of intelligent shield 

machines 

 

Despite their rapid development, there is still no 

consensus on the definition, goals, content, and 

methods of achieving intelligent shield machines. 

This section aims to address the fundamental issues 

surrounding intelligent shield machines and presents 

the current development status of the technology. 

2.1  Implications of intelligent shield machines 

To date, the definition and meaning of intelligent 

shield machines remain unclear. Additionally, the 

term "intelligent" has been overused to some extent. 

To promote the advancement of intelligent shield 

machines, we propose a definition as follows.  

Definition of intelligent shield machines: An 

intelligent shield machine is a new generation of 

high-performance tunnel boring apparatus character-

ized by its utilization of advanced intelligent tech-

nology and its high degree of autonomy. These ma-

chines integrate sophisticated sensors, automation, 

and artificial intelligence to independently perform 

intricate tunneling tasks, all while intelligently 

adapting to changing geological conditions. The level 

of intelligence of an intelligent shield machine in-

creases with its degree of autonomy. 

This definition encompasses several key ele-

ments of intelligent shield machines. Firstly, an in-

telligent shield machine must be capable of com-

pleting tunneling tasks, which include various 
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sub-tasks such as excavation, supporting pressure 

balancing on the excavation face, steering, muck 

removal, lining, condition monitoring, maintenance, 

and construction management, among others. Sec-

ondly, the effectiveness of each task must be evalu-

ated using specific performance metrics. Finally, the 

definition highlights the importance of the machine's 

ability to complete tasks with a certain degree of 

autonomy; the higher the degree of autonomy, the 

higher the level of intelligence. 

Meaning of shield machine intelligence: The 

meaning of shield machine intelligence, according to 

the proposed definition of intelligent shield machines, 

is to enhance the ability of such machines to cope 

autonomously with uncertainty arising from both the 

complex geological environment and the machine 

itself. Additionally, it includes the autonomous com-

pletion of tunnel construction operations, minimizing 

or eliminating the need for human intervention, while 

ensuring task completion performance. 

Compared to existing intelligent ground mobile 

construction machinery such as excavators (Bradley 

et al., 1993; Bradley and Seward, 1998; Cui et al., 

2022; Eraliev et al., 2022), loaders (Takei et al., 2013; 

Takei et al., 2015), and tractors (Gonzalez-De-Santos 

et al., 2020; Sunusi et al., 2020; Shojaei, 2021), shield 

machines operate underground in a vastly different 

environment. Intelligent ground mobile construction 

machinery must navigate dynamically changing en-

vironments, avoiding obstacles and even pedestrians 

that may appear at the construction site. Conversely, 

the tunnel axis of a shield machine is carefully de-

signed prior to construction and it does not change 

during excavation. Furthermore, pedestrians are not 

present in front of the excavation face. The primary 

environmental uncertainty faced by shield machines 

is ever-changing complex geological conditions with 

strong randomness. Therefore, developing dedicated 

technologies for intelligent shield machines, in addi-

tion to the common technologies used for intelligent 

construction machinery, is crucial. 

Contents of shield machine intelligence: 

Based on the characteristics of shield machines, this 

paper suggests that shield machine intelligence 

should encompass at least five aspects: environmental 

state perception intelligence, equipment and compo-

nent intelligence, operation intelligence, prognostics 

and health management intelligence, and shield ma-

chine fleet construction intelligence, as shown in Fig. 

2. The aim of each aspect should be to increase the 

degree of autonomy and optimize performance. Dif-

ferent levels of intelligence may be required for each 

function. Environmental state perception intelligence 

should include, but not be limited to, geological con-

dition forecasting, geotechnical parameter identifica-

tion, rock-mechanical parameter mapping and surface 

 
Fig. 2  Contents of shield machine intelligence 
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subsidence sensing and prediction. Equipment and 

component intelligence refers to the intelligence of 

equipment and components such as new types of 

segment-assembling robots, cutting tool inspection 

and replacement robots, and intelligent hydraulic 

components, etc. Operation intelligence aims to assist 

or replace human operators in controlling basic tun-

neling processes such as excavation, face pressure 

balancing, steering, and grouting, etc. Prognostics and 

health management intelligence should include con-

dition monitoring, fault diagnosis, and predictive 

maintenance of key components and systems. Shield 

machine fleet construction intelligence should in-

clude, but not be limited to, construction planning and 

schedule management, construction big data moni-

toring and storage, and fleet coordination, etc. These 

aspects may overlap and intersect with each other, 

and the core of shield machine intelligence is to im-

prove the autonomy of the percep-

tion-cognition-decision-action cycle. 

Development modes of intelligent shield ma-

chines: The development of intelligent shield ma-

chines can be categorized into three modes: tele-

operation, semi-autonomy, and full autonomy. In 

teleoperation, the shield machine is still controlled by 

human operators, but from a remote location instead 

of the control cab. Despite appearing unmanned, the 

machine is fully operated by humans and requires 

minimal or no operation intelligence for shield ma-

chine. However, significant improvements in equip-

ment and component intelligence are needed due to 

the reduction in the number of people working inside 

the shield machine. For instance, manual field opera-

tion-dependent segment assembly systems need to be 

upgraded. In semi-autonomous mode, the human 

operator remains in the cab for control and monitor-

ing, while most of the tasks are performed autono-

mously by the intelligent shield machine. The human 

operator only takes control when the machine cannot 

complete tasks independently or when its operation is 

deemed unsuitable. In fully autonomous mode, a 

group of intelligent shield machines can cooperate 

with each other to complete tunneling tasks inde-

pendently, without human intervention. From a re-

search perspective, these modes all have great poten-

tial, especially the fully autonomous mode. Obvi-

ously, achieving full autonomy still requires signifi-

cant research efforts. We believe the development of 

intelligent shield machines is evolutionary rather than 

revolutionary. They evolve from conventional shield 

machines in a natural way by adding intelligent 

components to achieve full autonomy. It is worth 

noting that the above discussion also applies to hard 

rock TBMs. 

2.2  Development status of intelligent shield ma-

chines 

Although research on intelligent shield machine 

technology is still in its infancy, it is developing 

rapidly, and valuable results have already been 

achieved in various aspects of such machines. In 

terms of environmental state perception intelligence, 

Nie et al. (2021) introduced an automated seismic 

detection system, which is installed on a TBM, ena-

bling rapid imaging of anomalous zones ahead of the 

tunnel face. Liu et al. (2017; 2018) proposed a novel 

3-dimensional observation system for a seismic ahead 

prospecting method. Li et al. (2017b) proposed inte-

grating the interpretation of collected data to enhance 

the reliability and accuracy of tunnel ahead pro-

specting. These works can be considered as sen-

sor-based methods. In recent years, more and more 

scholars have started to use big data and machine 

learning methods to achieve forecasting of the geo-

logical conditions ahead. For instance, Hu et al. 

(2023) employed a combination of the k-means and 

XGBoost algorithms to ascertain the stratum compo-

sition of the excavation face, relying on tunnelling 

parameters. Similarly, Yu et al. (2022) introduced a 

semi-supervised machine learning framework for the 

recognition of geological formations on the shield 

machine tunnel face. Related works can be found in 

the references (Zhang et al., 2019b; Cheng et al., 

2020; Qin et al., 2023a; Xu et al., 2023). However, 

there is still controversy over whether such methods 

are effective in engineering. Erharter and Marcher 

(2021) argued that while machine learning geology 

ahead prediction models may seem promising at first 

sight, these forecasts are mostly just delayed and 

slightly altered versions of the input data, lacking any 

true predictive value. While Sheil (2021) acknowl-

edged that attempting to forecast geotechnical condi-

tions far ahead of the TBM using TBM operational 

parameters is likely to be fruitless,  that is not due to 

the incapability of machine learning algorithms to 

identify this relationship. The reason lies in the fact 

that such a relationship simply does not exist. Instead, 

the combination of machine learning forecasting 
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techniques with soil imaging techniques has shown to 

be a much more promising avenue of research 

(Schaeffer and Mooney, 2016; Wei et al., 2018). In 

addition to geological condition forecasting, research 

efforts have also been focused on surface settlement 

and surrounding rock deformation. Bouayad and 

Emeriault (2017) combined the principal component 

analysis with an adaptive neuro-fuzzy based inference 

system to model the ground surface settlements in-

duced by EPB shield tunneling while Zhang et al. 

(2019a) utilized a random forest algorithm to predict 

tunneling-induced settlement. These studies have laid 

a strong foundation for realizing environmental state 

perception intelligence. 

In recent years, there has been a rapid develop-

ment in equipment and component intelligence and 

various new technologies have emerged, such as 

cutter replacement robots, segment-assembly robots, 

and synchronous propulsion and assembly technol-

ogy. Specifically, replacing the excavation tools for 

pressurized shields is a highly risky and difficult op-

eration for maintenance personnel. To address this 

issue, researchers have proposed different robotized 

cutter replacement methods, such as the 6 de-

grees-of-freedom (DOF) articulated manipulator with 

2 DOF translation stage for cutter replacement (Yuan 

et al., 2019; Yuan et al., 2020a; Yuan et al., 2020b; Du 

et al., 2022) and the flexible robot and multi-axis 

robot developed by Chen (2019) for slurry shield 

machine cutter wear status detection and robotic cut-

ter replacement operation under pressurized condi-

tions (Fig. 3). Other researchers, such as Zhang et al. 

(2021a) and Meng et al. (2021), have respectively 

proposed different types of serial robots and inte-

grated disc cutter designs to simplify the replacement 

process and facilitate robot operation. In addition to 

electric drive robots, electro-hydraulic drive robot 

solutions have also been explored. For instance, Zhu 

 
Fig. 3  Shield machine cutter inspection and replacement robots: (a) inspection robot, (b) cutter replacement robot 

 
Fig. 4  TBM steel arch assembly robot operation system: (a) steel arch assembly robot, (b) tunnel bottom muck removal 

robot 
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et al. (2022) elaborated a design of an elec-

tro-hydrostatic actuator for the disc cutter replace-

ment manipulator. Another breakthrough in equip-

ment and component intelligence is the development 

of the steel arch assembly robot operation (SAARO) 

system, led by the China Railway Construction Heavy 

Industry Group. The SAARO system can realize the 

intelligent assembly of steel arches with integrated 

ring/bracing tightening and fast support operation for 

local collapse and broken surrounding rocks. The 

system, as shown in Fig.4, consists of a steel arch 

assembly robot, a steel arch splicing manipulator (He 

et al., 2022), and a machine vision servo-driven muck 

removal robot at the bottom of the tunnel (Jiang et al., 

2022), which significantly improves the safety and 

efficiency of TBM construction. Furthermore, the 

asynchrony between excavation and segment assem-

bly in traditional shield machine construction opera-

tions has been a significant hindrance to the con-

struction speed of shield tunneling. To address this 

problem, researchers have explored synchronous 

propulsion and assembly methods, such as the con-

tinuous shield advance scheme using extruded con-

crete lining and a steel formwork assembly robot 

proposed by Braaksma et al. (2006), and the syn-

chronous propulsion and assembly method based on 

active closed-loop oil pressure control of the shield 

propulsion system proposed by Zhu et al. (2021). Dai 

et al. (2022) further analyzed segment interactions 

and stress concentrations under asymmetric force 

effects. These works provide valuable exploration in 

terms of equipment and component intelligence for 

shield machines. 

Extensive research has been conducted in the 

field of prognostics and health management intelli-

gence, focusing on both the overall shield machine 

and its key components. Li et al. (2010) developed a 

back propagation (BP) neural network to identify 

operational faults such as spewing of the screw con-

veyer, wear of the disc cutters, and jamming of the 

shield. Building upon the BP neural network, various 

methods have been proposed for feature extraction. 

For instance, Yu and Han (2010) utilized rough set as 

a feature reduction technique before inputting the data 

into a BP neural network to diagnose faults in the 

shield machine, such as motor start failure and clutch 

overheating. Zhang et al. (2013) and Zou and Liang 

(2018) respectively combined wavelet packet trans-

forms and self-organizing feature maps with the BP 

neural network to diagnose construction faults in 

shield machines. Apart from the BP neural network, 

Jia and Shi (2014) enhanced the Elman neural net-

work and used it for diagnosing construction faults in 

the shield machine, including cutterhead caking (also 

known as clogging), soil occlusion in the pressure 

chamber, spewing of the screw conveyer, and surface 

subsidence. In recent years, deep learning techniques 

have been employed to predict and diagnose con-

struction faults in shield machines. For example, Sun 

et al. (2019) developed a long short-term memory 

(LSTM) neural network, while Qin et al. (2023b) 

proposed a LSTM-autoencoder. These deep learning 

techniques have shown significant potential in im-

proving the accuracy of construction fault detection. 

 
Fig. 5  Big data platform for shield machine construction: (a) platform interface, (b) central computer room, (c) control 

center 
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Additionally, research has been conducted on key 

components of shield machines, such as disc-cutters 

(Kui et al., 2016; Ren et al., 2018; Elbaz et al., 2021; 

Mahmoodzadeh et al., 2021a; Zhou et al., 2023), main 

bearings (Zhang et al., 2012b; Fu et al., 2022b), and 

hydraulic systems (Li et al., 2017a). These studies 

contribute valuable insights into prognostics and 

health management intelligence for shield machines. 

It is important to note that most existing fault detec-

tion methods are data-driven, and addressing the 

weak generalization ability and poor interpretability 

of these methods remains a challenge. 

In 2017, the State Key Laboratory of Shield 

Machine and Boring Technology in China success-

fully implemented a shield machine construction big 

data application platform, as depicted in Fig. 5. This 

platform has been adopted by over 220 shield and 

TBM projects from more than 30 construction com-

panies across China, as well as ongoing projects in 

countries such as Israel, Singapore, and Malaysia, etc. 

It has collected a vast array of engineering infor-

mation, including geological maps, tunneling param-

eters, segment attitude, earth subsidence, and more, 

comprising over 1000 types of data. The total accu-

mulated data has now reached an impressive 200 TB. 

The platform offers several essential functionalities, 

including intelligent monitoring, comprehensive 

analysis, collaborative management, and intelligent 

application. Users can access real-time operational 

information and historical data of shields and TBMs 

through a mobile application. Additionally, the plat-

form provides services like risk alerts, equipment 

management, comprehensive analysis, decision sup-

port, and technical consultations tailored to the spe-

cific needs of relevant entities. Furthermore, shield 

manufacturing companies such as the China Railway 

Engineering Equipment Group and the China Rail-

way Construction Heavy Industry Group have also 

successfully established their own shield construction 

big data platforms. These big data platforms and ser-

vices lay a solid foundation for conducting analysis 

on big data and achieving shield machine fleet con-

struction intelligence. In addition, construction 

management related works, such as tunneling time 

planning (Vargas et al., 2014), cost estimation and 

management (Guan et al., 2014; Mahmoodzadeh and 

Zare, 2016; Mahmoodzadeh et al., 2021b), provide 

valuable insights in this field. 

The current research status in the field of opera-

tion intelligence of shield machines will be discussed 

in detail in Section 3. In summary, significant ad-

vances have been made in the field of intelligent 

shield machines. However, it is important to 

acknowledge that the development of intelligent 

shield machines is still in its early stages. The existing 

research has achieved only a limited level of auton-

omy, implying a relatively low degree of intelligence. 

There is still tremendous potential for the future de-

velopment of intelligent shield machines. As tech-

nology continues to progress and research expands, 

we can expect significant advances in terms of au-

tonomy and intelligence. With further innovation and 

refinement, intelligent shield machines have the po-

tential to revolutionize the construction industry by 

enhancing efficiency, accuracy, and safety. 

 

 

3  State-of-the-art of smart operation 

 

Operation intelligence, also known as smart op-

eration, aims to replace or assist human operators in 

basic operation and control tasks of shield machines 

such as pressure balancing, excavation, and steering. 

Smart operation is the core of completing tunneling 

tasks in response to geological uncertainties. There-

fore, researching key technologies for smart operation 

is of significant importance among all aspects of 

shield machine intelligence. 

3.1  Intelligent pressure balance control on the 

excavation face 

Pressure balance control on the excavation face 

is a crucial technology for ensuring the safety of 

shield machine construction. This is because pressure 

balance control has a direct impact on surface sub-

sidence. Unbalanced pressure on the excavation face 

can result in severe damage to buildings on the sur-

face and pose a threat to personnel. When the ambient 

soil and water pressure exceeds the pressure in the 

shield excavation chamber, surface collapse accidents 

can occur. Conversely, when the ambient soil and 

water pressure is less than the sealing chamber pres-

sure, surface uplift (for EPB shields) or slurry blow-

out through the surface (for SPB shields) accidents 

may occur. Manual pressure balance control on the 

excavation face is considered not reliable or effective 

enough. Therefore, researchers have been working on 

automating the process of pressure balance control to 
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replace manual operation. 

Kuwahara et al. (1988) developed a fuzzy con-

troller to automate earth chamber pressure control for 

EPB shields by imitating skilled driver operations. 

Yeh (1997) used a BP neural network to automati-

cally control earth chamber pressure and the simula-

tion results show that the system is a feasible one. Liu 

et al. (2011) established a least-squares support vector 

machine prediction model for setting the pressure of 

the excavation chamber, which outperformed the BP 

neural network through simulation comparison. Li et 

al. (2009a) controlled the EPB pressure by optimizing 

the angular velocity of the screw conveyor. Yang et 

al. (2009) established a theoretical model of excava-

tion chamber pressure through theoretical analysis 

and developed a thrust system and screw conveyor 

electro-hydraulic control system using proportional 

integral derivative (PID) controllers. The system's 

performance was validated under constant reference 

input on a test rig. Xie et al. (2016) developed an 

adaptive robust controller for the thrust hydraulic 

system to realize instantaneous regulation of the ex-

cavation chamber pressure. Shao and Lan (2014) 

proposed a method for evaluating the stability of the 

excavation face based on the normal vector angle of 

the center of the pressure field of the excavation 

chamber. Based on this, they adopted a particle 

swarm algorithm to develop a solution method for the 

optimal screw conveyor speed to ensure the stability 

of the excavation face. Liu and Zhang (2018) devel-

oped a least squares support vector machine mod-

el-based multiple-variable predictive control strategy 

to control the screw conveyor speed and advance 

speed simultaneously. To further address the problem 

of synchronous optimization control of multiple 

subsystems of the shield machine, they also proposed 

an adaptive dynamic programming-based method 

(Liu et al., 2020) to control the excavation chamber 

 
Fig. 6  Ø2.5m multi-purpose test rig for slurry shield machine: (a) overview of the test rig, (b) slurry processing, (c) hy-

draulic system for loading, (d) hydraulic system for driving 
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pressure. 

For SPB shields, several studies have focused on 

the stability mechanism and condition of the excava-

tion face under different geological conditions. Li et 

al. (2009b) investigated the face stability of a large 

slurry shield-driven tunnel in soft clay. Lu et al. 

(2021) proposed a centrifugal model test to study the 

face failure model and limit support pressure of slurry 

shield tunnels in mixed ground. Jin et al. (2022) 

conducted geotechnical analysis on the face stability 

of the slurry shield machine in water-bearing ground. 

Related works can be found in the references (Zhang 

et al., 2018; Ling et al., 2021; Shang et al., 2023). In 

terms of intelligent control, Song (2011) proposed a 

fuzzy logic-based pressure balance control scheme 

that uses a fuzzy PID controller to achieve constant 

value control for air chamber pressure and a feed-

forward PID controller to control the slurry feeding 

flow. However, this system can only achieve 

semi-automatic control of the SPB process as the 

supporting pressure still needs to be set manually. 

Zhou et al. (2013) developed an empirical engineer-

ing model for the maximum and minimum setting 

values of the air chamber pressure and proposed a 

predictive control system using an Elman neural 

network model to replace the manual setting of the air 

chamber pressure value. Li and Gong (2019) pro-

posed a predictive control scheme for slurry pressure 

balance using a diagonal recurrent neural network and 

evolved particle swarm optimization. Wang et al. 

(2021) used a LSTM neural network to predict the 

slurry pressure in the excavation chamber with in-

stantaneous tunneling parameters and the geological 

data. In addition to indirect-type slurry shields, Li et 

al. (2015) established a pressure balance dynamic 

model for the direct-type shield machine and pro-

posed a predictive function controller. 

These works have made significant contribu-

tions in the area of intelligent supporting pressure 

balance control for shield machines. However, the 

level of autonomy achieved by these methods is not 

yet satisfactory. For both EPB and SPB shield ma-

chines, pressure control in the excavation chamber is 

a multi-input process that requires the coordination of 

multiple subsystems. Most existing research can only 

achieve partial automation of one subsystem, while 

manual operation of other subsystems is still required. 

This limits the degree of autonomy that can be 

achieved. Furthermore, little is known about the 

coupling mechanism of multiple systems for pressure 

balance on the excavation face. To address these is-

sues, our research team proposed a 

cyber-physical-system-based hierarchical autono-

mous supporting pressure balance control scheme for 

SPB shields (Zhang et al., 2020). In this work, the 

mechanism of multi-system coupling interactions in 

the SPB process is revealed by establishing a state 

space model and conducting a singular value de-

composition analysis. The control system is divided 

into two layers: the coordination layer and the exe-

cution layer. The coordination layer is responsible for 

decision-making at the upper level, while the execu-

tion layer handles the closed-loop control of the ac-

tuator at the lower level. The system is capable of 

autonomously and simultaneously controlling the 

inflow and outflow rates of the slurry pumps as well 

as the pressure in the air chamber, without the need 

for human intervention. By analyzing field big data 

and comparing the system's performance with that of 

the human operator, it was demonstrated that the 

accuracy of SPB control improved by 64.76%. To 

further validate the performance of the system, we 

have built a Ø2.5m multi-purpose test rig for slurry 

shield machine, as shown in Fig. 6. The test rig 

comprises several subsystems, including a load sim-

ulation system, a simulated shield system, a slurry 

circulation system, a slurry processing system, hy-

draulic systems, and an electric control system. This 

setup enables various experimental tests such as 

pressure balance control, slurry circulation, slurry 

separation, and electro-hydraulic control. The ex-

periments are currently underway, and we anticipate 

that this technology will be applied in actual shield 

tunneling construction in the near future. 

3.2  Intelligent decision-making and performance 

optimization 

Excavation is the primary task of shield ma-

chines. Dealing with changes in complex geological 

environments, making intelligent decisions regarding 

operational parameters of the subsystems, and opti-

mizing shield tunneling performance are key issues 

for shield operation intelligence. 

Current research on intelligent decision-making 

and performance optimization of shield operational 

parameters can be broadly classified into two main 

groups: supervised machine learning-based methods 

and optimization-based methods. The first group uses 
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supervised machine learning or deep learning tech-

niques to determine the operational parameters under 

various working conditions. Extensive studies have 

been conducted to predict key performance metrics of 

shield tunneling, including advance rate (Elbaz et al., 

2019; Mokhtari et al., 2020; Wang et al., 2020; Lin et 

al., 2021; Fu et al., 2022a; Lin et al., 2023b), thrust 

force (Hasanpour et al., 2018; Kong et al., 2022; Lin 

et al., 2022), cutter-head torque (Hong et al., 2021; 

Qin et al., 2021; Shi et al., 2021), energy consumption 

(Zhang et al., 2012a; Elbaz et al., 2022; Zhou et al., 

2022), and face pressure (Bai et al., 2021), among 

others. Additionally, Zhou et al. (2018) proposed a 

novel approach to assess the geological risk level by 

employing a complex network modeling methodol-

ogy, which introduces a fresh perspective to the field. 

Shahrour and Zhang (2021) proposed some recom-

mendations for the efficient application of soft com-

puting methods in TBM performance prediction with 

a focus on the selection of the soft computing tech-

nique, input parameters, and optimal soft computing 

architecture. 

While supervised machine learning-based 

methods aim to replicate human operation by ana-

lyzing construction field data, there is limited dis-

cussion of how the predicted information can be ef-

fectively used to enhance decision-making and con-

trol of the shield operational parameters for perfor-

mance improvement. One significant limitation of 

these methods is their inherent dependence upon a 

sufficient accumulation of data. This makes them 

unsuitable for the initial stages of tunnel construction. 

Another notable drawback is their reliance on super-

vised labels, as they essentially learn from the expe-

riences of human operators. Although these methods 

can approach human performance, surpassing it 

proves challenging. Furthermore, these methods en-

counter the same challenge as other supervised 

learning approaches, namely limited generalization 

capabilities. Despite these limitations, using super-

vised learning for accurate prediction of shield per-

formance metrics still holds significant potential for 

the detection of shield anomalies, modeling of the 

shield-environment interaction, and intelligent con-

trol of the shield operational parameters, etc. 

To further improve tunneling performance, the 

second group of research involves optimization 

methods. Xu et al. (2022) used the energy entropy 

method to identify the optimal disc cutter spacing. 

Through experimental investigation, Zhang et al. 

(2021b) recommended the optimal cutting tool alloy 

hardness interval for dense fine silty sand ground. 

Wang et al. (2018a) developed a multidisciplinary 

optimization method based on reliability to determine 

the major structural and operational parameters of the 

TBM. Sun et al. (2018) employed a collaborative 

optimization architecture to find the optimal design 

parameters of a hard rock TBM that minimize the 

construction period. Lin et al. (2023a) proposed a 

robust optimization method supported by an interac-

tive and explainable AI system to optimize the layout 

of newly constructed tunnels. These works provided 

valuable insights into optimizing tunneling perfor-

mance, particularly during the TBM design phase.  

Once the design parameters are determined, the 

tunneling performance of a shield machine depends 

on the selection of operational parameters for differ-

ent geological conditions. Faramarzi et al. (2020) 

employed the discrete element method to analyze the 

optimal cutterhead torque and thrust force. Zhang et 

al. (2012a) optimized the energy consumption of 

shield machines using a combined mechanical and 

regression analysis. These studies primarily focus on 

the single-objective optimization of shield tunneling 

performance. However, as a complex engineering 

system, the tunneling performance of a shield ma-

chine often involves multiple conflicting optimization 

objectives. To address the multi-objective optimiza-

tion problem in shield tunneling, scholars have con-

ducted extensive research. Wang et al. (2023) pro-

posed an improved loss function-based artificial 

neural network combined with quantum particle 

swarm optimization to increase the penetration rate 

and, simultaneously, reduce the rock-breaking spe-

cific energy. In recent years, the nondominated sort-

ing genetic algorithm (NSGA-II) has been introduced 

to solve the multi-objective shield performance op-

timization problem and obtain decision-making solu-

tions. In NSGA-II-based methods, machine learning 

models are frequently used to predict objective per-

formances. For instance, Liu et al. (2022) selected 

advance rate and surface settlement as objectives and 

combined a grey wolf optimizer-generalized regres-

sion neural network model with the NSGA-II algo-

rithm to obtain optimal operational parameters. These 

parameters include total thrust force, rotational speed 

of the cutterhead, torque of the cutterhead, grout 

amount, and pressure. Feng et al. (2022) integrated a 
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support vector machine model with the NSGA-II 

algorithm to optimize surface settlement and cutter 

wear. 

However, these methods are based on static op-

timization, which can only optimize immediate per-

formance metrics under specific conditions. They are 

difficult to adapt to changing geological conditions in 

real-time or to optimize long-term performance. In 

terms of completing an overall tunneling project, the 

long-term comprehensive tunneling performance 

holds greater significance than immediate perfor-

mance. For instance, the cumulative energy con-

sumption and average tunneling speed over a specific 

period provide a more accurate reflection of the shield 

tunneling performance compared to the energy con-

sumption and tunneling speed at a particular moment. 

To address these issues, deep reinforcement learning 

(DRL) has received increasing attention from re-

searchers. Elbaz et al. (2023) integrated the deep-Q 

learning algorithm and particle swarm optimization to 

predict thrust force and torque. Zhang et al. (2022) 

proposed an autonomous optimal excavation method 

based on DRL, where a DRL agent determines the 

optimal operating action sequence trajectory for a 

shield machine. This approach not only has the po-

tential to replace human operation but has also proven 

effective in improving long-term comprehensive 

excavation performance. 

3.3  Intelligent attitude control and trajectory 

correction 

The quality of tunnel construction is directly 

impacted by the amount of deviation of the shield 

excavation axis from the designed tunnel axis. Misa-

lignment of shield excavation axis is a challenging 

problem and is due to uneven geological load, shield 

center deviation, segment assembly errors, and im-

proper selection of operational parameters. The 

complexity of geological loads and the shield's char-

acteristics, such as large inertia, non-linearity, and 

time-delay, make it difficult to correct trajectory de-

viation. Manual control is limited by human experi-

ence and perception, leading to lag and difficulty in 

correcting deviation. Severe serpentine motions are a 

common phenomenon for shield machines. The cur-

rent method for trajectory correction is based on de-

viation information provided by the laser guidance 

system, and human operators adjust pressure levels in 

the thrust cylinder groups to correct the trajectory. 

However, this system has a low autonomy level since 

human operators have full control. To overcome the 

shortcomings of human operation and improve the 

accuracy of the shield excavation trajectory, re-

searchers have conducted numerous studies on intel-

ligent control of shield attitude and trajectory correc-

tion. 

The shield thrust system operates as a parallel 

mechanism. Shield attitude control and trajectory 

correction encompass various elements, including 

trajectory planning at the upper-level, actuator control 

at the lower-level, as well as the underlying forward 

and inverse kinematics and dynamics. Literature in 

this field can be structured and organized based on 

these perspectives. 

Kuwahara et al. (1988) attempted to replace 

manual operation with fuzzy control to control the 

shield attitude, with industrial trials also being con-

ducted. Guo et al. (2012) developed a trajectory cor-

rection decision method based on support vector data 

description. Huang et al. (2022) combined the grid 

method with multi-layer perception to control the 

tunneling posture of the shield machine. These studies 

mainly focused on the upper-level decision-making, 

with no consideration given to the control and exe-

cution errors of the thrust cylinders at the lower level. 

In terms of lower-level actuator control, Yue et 

al. (2011; 2012) established a shield load model based 

on theoretical analysis and the load observer method 

and developed a sliding mode robust controller for 

thrust force of cylinder groups to improve the dis-

turbance rejection capability of the actuators. Wang et 

al. (2018b) established constraint equations of the 

thrust mechanism workspace and proposed two types 

of automatic control systems for attitude and trajec-

tory tracking. These studies mainly focused on the 

robust control of the thrust cylinder at the lower level 

to accurately execute the upper-level correction 

commands as much as possible under the disturbance 

of the environmental load. 

Autonomous control requires equal attention to 

both upper-level planning and lower-level actuator 

execution. Ineffective correction commands at the 

upper level can hinder effective deviation correction, 

even with precise lower-level execution. Similarly, 

large execution errors at the lower level can prevent 

satisfactory correction, even with accurate up-

per-level commands. To address this, some re-

searchers have begun to combine upper-level deci-
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sion-making with lower-level control. For example, 

Xie et al. (2012) developed an automatic trajectory 

tracking control system for shield machines by com-

bining deviation correction trajectory planning with 

thrust cylinder control.  

Research on the theoretical model of geological 

loads for shield machines is usually conducted in the 

fields of civil engineering and mechanics, while 

studies on attitude control are carried out in the dis-

ciplines of mechanical engineering and control. 

However, it should be noted that the accuracy of 

shield attitude regulation is determined by a combi-

nation of load, actuation control, and deviation cor-

rection parameter planning. Despite this, due to the 

complexity of geological loads and disciplinary bar-

riers, it has been a significant challenge for the in-

dustry to establish accurate shield-environment dy-

namic interaction models, and that hinders the de-

velopment of intelligent control of shield attitude and 

trajectory deviation correction. Recently, with the 

advances in artificial intelligence, machine learning, 

and especially deep learning, new opportunities have 

emerged for establishing accurate mappings from 

operating and geological parameters to trajectory 

deviations. For instance, Zhou et al. (2019) developed 

a shield machine attitude hybrid deep learning pre-

diction model based on convolutional neural network 

and recurrent neural network. Shen et al. (2022) in-

corporated a wavelet transform into the LSTM to 

achieve real-time prediction of shield moving trajec-

tory during tunneling. Xiao et al. (2021) compared the 

performance of various artificial intelligence methods 

on the prediction of shield machine attitude. It can be 

observed that an attitude prediction model can be used 

in both the upper-level decision-making and 

shield-environment dynamic interaction modeling. A 

shield-environment dynamic interaction model can be 

considered as a sub-set of the upper-level deci-

sion-making methods. 

Previous studies have covered various aspects of 

intelligent control technology for shield machine 

attitude and trajectory correction, including up-

per-level decision-making, lower-level actuator con-

trol, and shield-environment dynamic interaction 

models, which have the potential to achieve autono-

mous control. Meanwhile, it should also be noticed 

that most of the existing research is theoretical and 

simulation-based and lacks experimental verification 

and industrial application. 

 

 

4  Autonomous operation framework 

 

From the preceding sections, it is evident that 

autonomous operation is the development direction 

and long-term goal of smart operation of shield ma-

chines. To date, an overall technical framework for 

the autonomous operation of shield machines has not 

yet been established. The lack of a technical frame-

work leads to fragmentation of research activities, 

making it difficult to form a full-featured smart op-

eration system. The architecture design of an au-

tonomous operation system can be divided into 

stand-alone level and shield machine fleet level, 

which will be discussed in detail in this section. 

The stand-alone level autonomous operation 

architecture is suitable for implementing autonomous 

operation on a single shield machine. Shield machines 

are large and complex systems that follow specific 

sequences or flow of execution during their opera-

tions, similar to a factory assembly line. The overall 

tunneling process flow of a shield machine mainly 

consists of inspections, starting the power unit, ex-

 
Fig. 7  The overall tunneling process flow of a shield ma-

chine 
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cavation, synchronized grouting, segment assembly, 

stopping the power unit, and preparing for the next 

cycle, as shown in Fig. 7. The boxes with double 

vertical line borders in Fig. 7 represent sub-processes, 

signifying that they possess distinct execution flows 

of their own. While the tunneling process flow is 

depicted in the form of a program flowchart in Fig. 7, 

it is crucial to recognize that in present engineering 

practice, these process flows are only partially auto-

mated. The operator's role remains vital in controlling 

the execution flow throughout the process. Addition-

ally, integrating smart operation technology into 

shield machines should be considered alongside the 

relevant process flows to maximize the potential of 

the existing technological foundation. Through a 

detailed analysis of each process and its 

sub-processes, it is possible to identify the areas 

where smart operation technology can be applied to 

optimize the shield machine's performance. 

The tunneling process of a shield machine be-

gins with the "inspections" subroutine, as depicted in 

Fig. 7. After the inspection procedure, the flow of 

execution proceeds to a decision block to determine if 

all boot conditions for the shield machine have been 

met. If not, the flow of execution goes to the "Error 

handling" subroutine, which handles the error and 

returns to the "Inspections" subroutine to check the 

boot conditions again. If all boot conditions are met, 

the flow of execution proceeds to the "Start the related 

power units" subroutine to start the power units se-

quentially. The excavation process follows, which 

requires the most significant level of intelligence and 

is marked in red in Fig. 7. Considering its complexity, 

the excavation process can be further divided into 

three sub-processes: excavation start-up, stable ex-

cavation, and excavation shut-down. After the exca-

vation process is started up, the flow of execution 

proceeds to stable excavation and synchronized 

grouting simultaneously. After the excavation process 

is shut down, the related power units are stopped by 

the corresponding subroutine. If the segment assem-

bly process is confirmed, the flow of execution enters 

the "segments assembly" subroutine. Otherwise, the 

flow of execution enters the "stop the remaining 

power units" subroutine. If the excavation of the next 

cycle is confirmed, the flow of execution enters the 

next cycle preparation subroutine, and then returns to 

the inspection subroutine. Otherwise, the tunneling 

process is ended. 

Table 1 illustrates the inspection items required 

for EPB shield machines prior to start-up. Some in-

spection items can be easily automated, while others 

require further innovation for automated inspections. 

For example, computer vision-based methods 

(Hamledari et al., 2017; Da Costa et al., 2020; Dong 

and Catbas, 2020) can be used to inspect the state of 

the belt conveyor, while mobile robots (Yu et al., 

2007; Lu et al., 2017; Sutter et al., 2018) can aid in 

inspecting the extension water pipes and cable con-

nections. 

The flowchart in Fig. 8 shows the process of 

 
Fig. 8  Flowchart of the “start the related power units” 

subroutine 

Table 1  Inspection items for EPB shield machines before start-up 

No. Inspection items No. Inspection items 

1 Extension water pipes and cables connections are normal 8 Oil level of the grease injection system is normal 

2 Power supply is normal 9 Foaming agent level is normal 

3 Circulating water pressure is normal 10 Grouting system is ready 

4 Filters are normal 11 Back-up track is normal 

5 Belt conveyor is normal 12 Muck removal system is ready 

6 Air compressor is operating normally 13 Operation panel is normal 

7 Tank oil level is normal 14 Guidance system is functioning 
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starting the related power units. It can be observed 

that this process does not require much human inter-

vention and can be easily fully automated by using 

programmable logic controllers (PLCs). The opera-

tion of the conventional ―excavation start-up‖ 

sub-process is completed using a combination of 

process logic and intelligence, as depicted in Fig. 9. 

The blue shaded area in Fig.9 represents the log-

ic-based process followed by the human operator. 

While the yellow marked area represents intelligent 

modules to realize automated smart operation. It can 

be expected that the execution sequence and adjust-

ment of digital quantities can be easily automated. By 

contrast, processes that require decision-making or 

continuous adjustment of analog quantities require 

intelligence, as outlined in the boxes with red borders. 

These tasks are completed by human operators in 

current engineering practice, and they can be auto-

mated using intelligent modules. At the beginning of 

the excavation start-up phase, the cutter-head rota-

tional speed, screw conveyor rotational speed, and 

advance speed are all zero. The excavation start pro-

cess requires gradually increasing these speeds to 

reach their respective target values. By providing the 

corresponding target speed and speed increase plan-

ning, the intelligent start operation of the cutter-head, 

screw conveyor, and thrust system can be achieved. 

The target speed can be obtained using machine 

learning, statistics from historical construction field 

data, or human experience. Once the initial and target 

speed values are known, various planning strategies, 

such as third-order and fifth-order polynomial tra-

jectory planning methods, can be used to plan the 

speed increase trajectory. Adjusting the pressure of 

each group of thrust cylinders is a more complex 

process, involving guiding and deviation correction 

strategies. However, this process can also be auto-

mated by providing the current deviation and geo-

logical data and making decisions on the pressure 

level and relative displacement of the thrust cylinder 

groups, as described in Section 3.3. The flowchart for 

the ―excavation shut-down‖ sub-process is illustrated 

in Fig. 10. The excavation shut-down process requires 

gradually reducing the speed of the screw conveyor 

and cutter-head rotation until they reach zero. Thus, it 

 
Fig. 9  Excavation start-up routine of the EPB shield ma-

chine 

 
Fig. 10  Excavation shut-down routine of the EPB shield 

machine 

 
Fig. 11  Four groups of parameters involved in the stable 

excavation operation 
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can be automated using similar methods as the ex-

cavation start-up process. 

The stable excavation process involves a sig-

nificant amount of decision-making and continuous 

adjustment of analog quantities, with very few fixed 

reference operating procedures. Therefore, the stable 

excavation process requires a significant amount of 

intelligence. It is the most challenging part of smart 

operation. In current engineering practice, the stable 

excavation process still relies on manual operation. 

Through analyzing the operation process of a shield 

operator, the stable excavation operation can be bro-

ken down into the adjustment of four groups of pa-

rameters. These four groups of parameters are cou-

pled to each other, and they include face support 

pressure balance parameters, excavation dynamic 

parameters, attitude parameters, and auxiliary system 

parameters, as shown in Fig. 11. Specifically, when it 

comes to EPB shield machines, the pressure balance 

parameters primarily consist of the target earth pres-

sure and screw conveyor speed. On the other hand, for 

SPB shield machines, the pressure balance parame-

ters mainly involve the air chamber pressure and the 

slurry flow rates. Excavation dynamic parameters 

mainly encompass cutter-head rotational speed, ad-

vance speed, thrust force, and cutter-head torque. The 

attitude parameters primarily involve the pressure of 

thrust cylinder groups and the relative displacement 

of the cylinders. Lastly, the auxiliary system param-

eters mainly comprise the parameters of the grouting 

and foam systems. These four groups of parameters 

can be individually set by different intelligent mod-

ules. 

The processes related to ―stop power units‖ can 

be readily automated using PLCs. On the other hand, 

the tasks involving ―segment installation‖ and ―next 

cycle preparation‖ are typically not shield machine 

operator dependent. However, automating them re-

quires a substantial level of equipment and compo-

nent intelligence, as described in Section 2. 

Based on the analysis conducted, we propose a 

system architecture for the autonomous operation of 

intelligent shield machines at the stand-alone level. 

As illustrated in Fig. 12, the system architecture con-

sists of four subsystems: the perception layer, the 

cognitive layer, the decision and planning layer, and 

the control and actuation layer. The perception layer 

serves as the foundation of the autonomous operation 

system and is responsible for gathering information 

about the shield machine and the geological envi-

ronment using various sensors and measurement 

technologies. The information obtained includes the 

shield machine's advance speed, cutterhead rotational 

speed, thrust force, cutterhead torque, and support 

pressure, as well as the state of the environment, such 

as surface settlement, geological category, pressure of 

the ground and water, burial depth, and geomechan-

ical parameters. 

 
Fig. 12  Stand-alone-level autonomous operation architecture 
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The cognitive layer processes the information 

gathered by the perception layer and uses it to form a 

comprehensive understanding of the current tunneling 

situation. This layer consists of three modules: sce-

nario identification, performance evaluation, and risk 

evaluation and warning. The scenario identification 

module identifies geological parameters and high-risk 

special geology to form a basic judgment on the ex-

cavation strategy. The performance evaluation mod-

ule evaluates the current excavation performance, 

which serves as the basis for forming the operation 

behavioral decision. The risk evaluation and warning 

module assesses various risks, such as surface col-

lapse or uplift, cutterhead stuck, and cutting-tool 

damage, and modifies the operation parameters ac-

cordingly. 

The decision and planning layer is the key sys-

tem of the autonomous operation system, and it is 

responsible for making operation behavioral deci-

sions. This layer comprises three modules: process 

control logic, operation behavioral decision, and mo-

tion planning. The process control logic module de-

termines which step of the current operation is in the 

overall and sub-process flow and keeps all operations 

within the process logic. The operation behavioral 

decision module determines reasonable behavior of 

the four main groups of operation parameters of the 

shield machine according to the information trans-

mitted by the cognitive layer. The motion planning 

module plans smooth change trajectories of the op-

eration parameters based on the operation behavior 

commands and the current perception information 

and sends them to the control layer for execution. 

Finally, the control and actuation layer accu-

rately executes the operation instructions of the deci-

sion and planning layer. This layer is divided into 

feedback controllers and actuators modules. The 

feedback controllers module converts the trajectories 

of the operation parameters generated by the motion 

planning module into specific instructions that each 

actuator can execute. These instructions are sent to 

each actuator of the actuators module through the 

output ports of the PLC to complete the excavation of 

the shield. By using feedback closed-loop control in 

the feedback controllers module, the system can 

overcome the influence of disturbances and obtain 

 
Fig. 13  Shield machine fleet level autonomous operation architecture 
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expected operation parameter values more accurately. 

The red arrows in Fig. 12 represent the direction 

of information flow. Starting from the perception 

layer, passing through the cognition layer, decision 

and planning layer, and control and actuation layer, 

and finally returning to the perception layer. This 

closed loop of information represents fully autono-

mous excavation. The red arrows with dashed 

boundaries in Fig. 12 represent optional directions of 

information flow. This flow direction begins from the 

perception layer to the human operator, then to the 

decision layer, forming a loop that represents hu-

man-assisted operation. By developing the diverse 

intelligent modules within each layer illustrated in 

Fig. 12, a comprehensive autonomous operation sys-

tem for a stand-alone shield machine can be estab-

lished. 

For shield machine fleet level, we propose a 

coordinated "cloud-edge-device" autonomous opera-

tion architecture, as shown in Fig. 13. In this archi-

tecture, the cloud severs are responsible for tasks like 

model training and updating, data storage and analy-

sis, and shield machine fleet coordination control and 

scheduling. The edge computing devices handle the 

deployment of the stand-alone level autonomous 

operation system and realize information exchange 

between shield machines. The device side consists of 

PLCs, sensors, and the intelligent shield machine 

fleet, which are tasked with completing tunneling 

operations, information acquisition and transmission 

functions. Lastly, a monitoring center can be em-

ployed to manage and monitor the tunneling process 

of the intelligent shield machine fleet. The commu-

nication protocols between various components are 

also depicted in Fig. 13. It's important to emphasize 

that, based on the specific requirements of the appli-

cation and the hardware in use, these communication 

protocols may vary. Moreover, it's essential to 

acknowledge that the available communication pro-

tocols may not be distinct; generally, multiple options 

exist to achieve a particular technical objective. 

 

 

5  Challenges and recommendations 

 

While intelligent shield machine technology and 

its smart operation have seen rapid advancements, 

there are still several persistent challenges. Address-

ing these issues will significantly enhance the ac-

ceptance of intelligent shield machines and contribute 

to their broader adoption. Thus, we recommend 

conducting research in the following aspects. 

(1) Robust shield-environment interaction model 

with strong generalization capability 

The construction process of shield machines has 

been extensively studied by various disciplines such 

as civil engineering, mechanical engineering, and 

control engineering. Each discipline uses its own 

modeling approaches but, depending on the require-

ments of their respective analyses, these models often 

focus on specific factors while overlooking others. 

For instance, in analyzing ground deformation caused 

by shield tunneling, civil engineering simplifies the 

characteristics of cutter-head movement. On the other 

hand, mechanical engineering simplifies the geolog-

ical load when examining the structure of the cut-

ter-head or shield tunneling trajectory. Meanwhile, 

control engineering simplifies the geological dis-

turbance and concentrates solely on the dynamic 

characteristics of the subsystem under study while 

analyzing and designing closed-loop controllers for 

each subsystem. Although these models and methods 

have proven applicable in their respective fields, they 

fail to accurately reflect the dynamic characteristics 

of shield-environment interaction and the complex 

coupling effects between subsystems. Consequently, 

they may not fully capture the intricacies of 

shield-environment interaction in practical scenarios. 

Recently, machine learning and deep learning have 

been widely utilized in shield-environment interac-

tion modeling. However, these algorithms suffer from 

inherent flaws, limiting their generalization capabili-

ties and thereby restricting their application to dif-

ferent excavation stages and tunnels. To enhance 

operational performance, it is crucial to develop a 

robust shield-environment interaction model with 

strong generalization capability. Additionally, a mul-

ti-system coupling mechanism with high-precision 

quantitative expression is essential to comprehen-

sively understand the interplay between different 

subsystems and to improve overall tunneling pro-

cesses. Furthermore, quantifying and managing the 

uncertainties involved in the model is also a crucial 

aspect of future research. 

(2) Automatic actuator controller design and 

tuning technology 
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Highly autonomous intelligent control systems 

typically adopt a layered structure, with the precision 

and accuracy of lower-level actuators playing a cru-

cial role in determining the overall task completion 

results. Shield tunneling involves various types of 

actuators, such as those used for pressure balance 

control in SPB shield machines, including slurry 

feeding pumps, slurry draining pumps, and air 

chamber pressure control valves. Similarly, EPB 

shield machines use actuators like screw conveyors 

for pressure balance control, while cutter-head drive 

systems utilize pump-controlled or valve-controlled 

hydraulic motors or electric motors. The thrust sys-

tem, on the other hand, relies on valve-controlled 

hydraulic cylinders. As the autonomy level of shield 

machines increases, it becomes essential for each 

actuator to be equipped with a separately designed 

closed-loop feedback controller to enhance execution 

accuracy and disturbance rejection capabilities. 

However, designing the closed-loop feedback control 

system for each actuator involves multiple iterative 

cycles of modeling, design, simulation, and adjust-

ment, making the process complex and 

time-consuming. Additionally, due to the intricate 

interaction between the machine and its environment, 

theoretical modeling of many processes proves chal-

lenging, and the coupling mechanisms of multiple 

systems remain unclear. Moreover, even if different 

shields utilize the same type of actuators, variations in 

geological conditions and shield diameters lead to 

significant differences in actuator controller structure 

and parameters. Consequently, controller designs 

cannot be easily reused, presenting a substantial 

challenge in actuator controller design and parameter 

tuning. 

(3) Intelligent shield machine operating system 

platform 

As outlined in Section 2.1, shield machine in-

telligence encompasses several crucial aspects, such 

as environmental state perception intelligence, 

equipment and component intelligence, operation 

intelligence, prognostics and health management 

intelligence, and shield machine fleet construction 

intelligence. Each of these aspects involves a series of 

distinct sub-tasks that require collaborative execution. 

They face various uncertainties and have diverse 

requirements for sampling and execution speed. 

Consequently, constructing a comprehensive intelli-

gent shield tunneling system independently presents a 

significant challenge for both individuals and re-

search teams. To tackle this challenge, the develop-

ment of a universal and open intelligent shield ma-

chine operating system platform becomes imperative. 

Such a platform would facilitate communication and 

collaboration among different sub-tasks, allowing 

diverse teams to develop intelligent shield tunneling 

functionalities and seamlessly integrate them. This 

approach is crucial as it will substantially expedite the 

advancement of intelligent shield machine technolo-

gy. 

(4) Experimental and engineering verification 

Safety, reliability, and robustness are critical 

considerations that must be effectively addressed 

during the development of next-generation intelligent 

shield technologies. They are the primary obstacles 

that hinder the progress of intelligent shield technol-

ogies, preventing them from transitioning from re-

search prototypes to commercial applications. Due to 

the substantial cost associated with shield construc-

tion and the potential risks involved, conducting di-

rect industrial test validations of new technologies 

poses significant challenges. This is especially true 

for smart operation technologies, which require 

careful validation before implementation. As a result, 

scaled model experiments play a vital role in the study 

and development of smart operation technologies for 

shield tunneling. However, shield tunneling entails 

the complex interaction of multiple systems, includ-

ing the cutter-head, support pressure balance control, 

thrust system, and the surrounding rock environment. 

To design an effective scaled model, comprehensive 

simulations must account for the individual roles and 

loads of each system, as well as establish a mapping 

relationship between field construction data and 

prototype test data. Widespread adoption of intelli-

gent shield machines may depend on public ac-

ceptance and trust in the technology. Negative per-

ceptions or concerns about automation in construction 

could impact adoption rates. Moreover, tunnel pro-

jects often require approvals and permits from gov-

ernment authorities. The deployment of advanced 

intelligent shield machines may, therefore, require the 

establishment of additional standards for validating, 

inspecting, and using these machines effectively. 
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6  Conclusions 

 

In this study, a systematic review of intelligent 

shield machine technology is conducted, with a par-

ticular emphasis on its smart operation. The funda-

mental issues of the intelligent shield machine, in-

cluding its definition, meaning, contents, and devel-

opment mode are addressed. An autonomous opera-

tion framework is proposed, encompassing both 

stand-alone and shield machine fleet levels. Addi-

tionally, challenges are identified, and recommenda-

tions are provided, to facilitate the achievement of 

autonomous operation. 

The development of intelligent shield machines 

follows an evolutionary path from conventional 

shields, gradually achieving autonomous tunneling by 

integrating intelligent modules. As technology ad-

vances and innovation accelerates, this exciting field 

holds the key to transforming conventional TBMs 

into cutting-edge TBRs. While this technology is in 

its early stages, all aspects of shield intelligence have 

made rapid strides. It's worth noting that the wide-

spread adoption of intelligent shield machines may 

hinge on public acceptance and trust in the technol-

ogy. Negative perceptions or concerns about auto-

mation in construction could potentially affect adop-

tion rates. There remains a substantial amount of 

research to be undertaken, particularly concerning 

shield-environment interaction models with strong 

generalization capabilities, automatic actuator con-

troller design and tuning, intelligent shield machine 

operating system platforms, as well as experimental 

and engineering validation. 

The future of intelligent shield machines is filled 

with promise, offering vast potential and opportuni-

ties. The incorporation of automation, artificial intel-

ligence, and advanced sensing capabilities will un-

doubtedly revolutionize tunnel construction, en-

hancing efficiency, safety, and environmental sus-

tainability. We encourage relevant research teams to 

dedicate themselves to the promising field of intelli-

gent shield machines, conducting collaborative re-

search, and unleashing of the full potential of intelli-

gent shield machines. 
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目 的：近年来智能盾构技术的发展体现出盾构机正在由

传统的隧道掘进机转变为隧道掘进机器人的趋

势。这一转变旨在解决传统盾构机行业在施工环

境和人工操控方面所面临的挑战。本文的旨在梳

Une
dit

ed

https://doi.org/10.1007/s11771-011-0728-0
https://doi.org/10.1016/j.autcon.2012.02.017
https://doi.org/10.1016/j.tust.2018.04.018
https://doi.org/10.1109/IPEC51340.2021.9421233
https://doi.org/10.1016/j.autcon.2019.102860
https://doi.org/10.1016/j.tust.2011.12.003
https://doi.org/10.1016/j.autcon.2018.12.022
https://doi.org/10.3389/feart.2023.1135948
https://doi.org/10.1109/CONTROL.2012.6334694
https://doi.org/10.1109/IAdCC.2013.6514308
https://doi.org/10.1007/s10064-021-02327-x
https://doi.org/10.1631/jzus.A2100325
https://doi.org/10.1016/j.autcon.2020.103173
https://doi.org/10.1016/j.autcon.2013.03.001
https://doi.org/10.1016/j.aei.2018.06.011
https://doi.org/10.1016/j.autcon.2019.102840
https://doi.org/10.1016/j.aei.2022.101642
https://doi.org/10.1016/j.autcon.2022.104480
https://doi.org/10.1088/1755-1315/861/5/052079
https://doi.org/10.1109/SDPC.2018.8664834


J Zhejiang Univ-Sci A (Appl Phys & Eng)   in press  | 27 

理智能盾构技术的发展现状，分析智能盾构的关

键基础问题，推动智能盾构及其智能操控的技术

进步。 

创新点：1. 提出了智能盾构的定义，分析了智能盾构的含

义、内容和发展模式；2. 从盾构单机作业和盾构

机群施工两个层面提出了盾构自主操控技术框

架。 

方 法：1. 通过系统的文献分析，梳理了智能盾构的技术

发展现状，提出了智能盾构的定义，分析了智能

盾构的含义、内容和发展模式 （图 2）；2. 通过

分析盾构掘进过程各环节的操作流程，从盾构单

机作业和盾构机群施工两个层面提出了盾构自

主操控技术框架 （图 12、13）；3. 针对智能盾构

及其自主操控技术发展中所面临的挑战，给出了

未来研究中需重点关注的问题建议。 

结 论：1. 智能盾构的发展应采用在传统盾构的基础上集

成相应智能模块的方式逐渐演进；2. 盾构掘进操

控中涉及到的离散数字量调控采用 PLC 逻辑控

制比较容易实现自动化，而需要决策和连续调节

的模拟量调控则需要相应的智能化模块；3. 智能

盾构技术发展迅速，潜力巨大，在强泛化能力的

盾构–环境交互模型、执行器控制器自动设计与

整定、智能操控平台、试验与工程验证等方面仍

面临挑战。 

关键词：智能盾构; 隧道掘进机; 智能隧道掘进机器人; 自

动驾驶; 自主控制; 盾构机; TBM; 智能 TBM 
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