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Abstract: For complex engineering problems, multi-fidelity modeling has been used to achieve efficient reliability analysis by 

leveraging multiple information sources. However, most methods require nested training samples to capture the correlation be-

tween different fidelity data, which may lead to a significant increase of low-fidelity samples. In addition, it is difficult to build 

accurate surrogate models because current methods do not fully consider the nonlinearity between different fidelity samples. To 

address these problems, a novel multi-fidelity modeling method with active learning is proposed in this paper. Firstly, a nonlinear 

autoregressive multi-fidelity Kriging (NAMK) model is used to build a surrogate model. To avoid introducing redundant samples 

in the process of NAMK model updating, a collective learning function is then developed by a combination of a U-learning 

function, the correlation between different fidelity samples, and the sampling cost. Furthermore, a residual model is constructed to 

automatically generate low-fidelity samples when high-fidelity samples are selected. The efficiency and accuracy of the proposed 

method are demonstrated using three numerical examples and an engineering case. 
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1  Introduction 

 

Reliability analysis plays a critical role in 

engineering design, as it aims to assess the probability 

of system failure with respect to specific performance 

criteria, considering the presence of various 

uncertainties (Echard et al., 2013). Generally, the 

failure probability can be calculated by a 

multi-dimensional integral 
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where  
T

1,..., n= x xx  denotes all random input var-

iables,  f
x

x  is the joint probability density function 

of x , and  G x  represents the limit state function. 

In practical engineering scenarios, the analytical 

solution of the above integral may not be obtained 

because limit state functions are usually implicit 

(Schuëller and Pradlwarter, 2007). The Monte Carlo 

simulation (MCS) method is a robust tool to deal with 

this problem. Nonetheless, a key limitation of MCS is 

the need for extensive limit state function evaluations 

to precisely estimate failure probabilities. Especially 

for complex problems which need finite element 

analysis, the total computational budget is 

unaffordable (Lelièvre et al., 2018). Some novel 

sampling methods, for example, importance sampling 

(IS) (Melchers,1990; Papaioannou et al., 2016) and 

subset simulation (SS) (Song et al., 2009; Li and Cao, 

2016), have been developed to enhance the efficiency 

of MCS, but they still require a substantial number of 

calls to the limit state function to obtain the failure 

probability with a satisfactory level of accuracy. Most 

probable point-based (MPP-based) methods, such as 

the first-order reliability method (FORM) 

(Hohenbichler and Rackwitz, 1982) and second-order 

reliability method (SORM) (Kiureghian and Stefano, 

1991), are frequently used to perform effective 

reliability analysis. However, these methods may 

have large errors when dealing with scenarios 

involving multiple MPPs or highly nonlinear limit 

state functions (Gavin and Yau, 2008). 
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Moment-based methods (Hong, 1996; Zhang and 

Pandey, 2013), which reconstruct the actual limit 

state probability density function from statistical 

moments derived from sampling, depend heavily on 

the choice of a suitable statistical model for their 

accuracy. 

Recently, surrogate models have gained wide-

spread popularity in reliability analysis, primarily due 

to their capability to handle problems characterized 

by complex implicit limit state functions. These 

models enable numerous simulation runs at a limited 

computational cost, facilitating failure probability 

evaluations (Wang et al., 2021; Aldosary et al., 2018). 

Representative surrogate models include response 

surface methodology (RSM) (Rajashekhar and El-

lingwood, 1993; Goswami et al., 2016), polynomial 

chaos expansion (PCE) (Hu and Youn, 2011; He et al., 

2020), support vector regression (SVR) (Feng et al., 

2019; Roy et al., 2019), radial basis function (RBF) 

(Li et al., 2018), Kriging (also called Gaussian pro-

cess) (Kaymaz, 2005; Su et al., 2017; Zhou and Peng, 

2020) and artificial neural network (ANN) (Cheng 

and Li, 2008; Ren et al., 2022). Accurate failure 

probability estimation by these models necessitates 

precise classification of samples as failing or 

non-failing, particularly near the limit state boundary. 

Therefore, various active learning strategies have 

been proposed to select samples adaptively and up-

date the surrogate model efficiently. Efficient global 

reliability analysis (EGRA) (Bichon et al., 2008), 

active Kriging Monte Carlo simulation (AK-MCS) 

(Echard et al., 2011), and importance sampling and 

Kriging reliability method (AK-IS) (Echard et al., 

2013) are the most popular active learning methods. 

Based on these methods, numerous enhanced meth-

odologies, such as error rate-based adaptive Kriging 

(REAK) (Wang and Shafieezadeh, 2019), adaptive 

Kriging oriented importance sampling (AKOIS) 

(Zhang et al., 2020), and the surrogate-model based 

active learning method (SM-ALM) (Hong et al., 

2022), have been developed to achieve notable effi-

ciency and accuracy for scenarios with multiple fail-

ure areas and low failure probabilities. However, for 

certain complex engineering challenges, such as 

aerodynamic simulations (Huan et al., 2019) and 

vehicle collision analyses (Wu et al., 2019), their 

computational intensity poses a significant challenge 

in acquiring sufficient high-fidelity samples for con-

structing accurate surrogate models, especially under 

limited simulation resources. 

Multi-fidelity surrogate-based methods provide 

a feasible way to reduce the computational cost of 

these reliability analysis problems. Although some 

low-fidelity models may have significant errors (e.g., 

simplified physical and coarse mesh models), 

low-fidelity samples can still provide some useful 

information, such as the changing trend of the re-

sponse (Forrester et al., 2007; Guo et al., 2022). 

Consequently, it is crucial for multi-fidelity modeling 

to effectively capture the relationship between 

high-fidelity and low-fidelity responses. In recent 

years, a variety of multi-fidelity modeling approaches, 

including co-Kriging (Forrester et al., 2007), the 

nonlinear autoregressive scheme (Perdikaris et al., 

2017), and multi-fidelity deep Gaussian processes 

(MF-DGP) scheme (Cutajar et al., 2019), have been 

developed. However, compared to active learn-

ing-based modeling methods, building a mul-

ti-fidelity model using a one-shot sampling strategy 

may significantly increase the computational cost due 

to the incomplete use of information. Thus, re-

searchers are increasingly incorporating active 

learning into multi-fidelity scenarios, leveraging the 

benefits of multi-fidelity modeling while adaptively 

selecting new samples near failure domains for con-

tinuous model enhancement. For instance, Chaudhuri 

et al. (2019) proposed a multi-fidelity efficient global 

reliability analysis (mfEGRA) approach that com-

bines the EGRA method with the multi-information 

source optimization method. To enhance the applica-

bility of co-Kriging modeling in predicting the limit 

state function for reliability analysis, Liu et al. (2021) 

developed an extended expected improvement (EEI) 

infill criterion. Yi et al. (2020) proposed a learning 

function called the augmented expected feasibility 

(AEF) function for multi-fidelity modeling to reduce 

the computational burden of reliability analysis. To 

effectively capture the correlations between data with 

different fidelities, nested samples are commonly 

used to build surrogate models (Meng and Karniada-

kis, 2020; Chen et al., 2022). This leads to a huge 

number of low-fidelity samples. Besides, existing 

multi-fidelity surrogate-based modeling methods 

often use a scaling factor and an error term to repre-

sent the relationship between different fidelity sam-

ples. However, the scaling factor and error term 
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cannot completely consider possible nonlinear rela-

tionships, which may lead to an incorrect trend and 

unreliable predictions. 

In this paper, we present a multi-fidelity 

surrogate modeling scheme combined with active 

learning to attain efficient reliability analysis with 

high accuracy. The primary research developments 

concern the following three aspects: (1) To improve 

the model’s ability to represent the relationship 

between information with different fidelities, we 

introduce the nonlinear autoregressive scheme 

(Perdikaris et al., 2017) and construct a multi-fidelity 

surrogate named the nonlinear autoregressive 

multi-fidelity Kriging (NAMK) model. (2) In the 

process of model refinement, the traditional learning 

function is replaced by a collective multi-fidelity 

learning function, which selects new sampling points 

from the multi-fidelity sample space by 

comprehensively considering the sampling cost and 

the correlation between multi-fidelity samples. (3) To 

further reduce the number of samples, instead of 

directly sampling, nested low-fidelity samples are 

generated using a constructed residual model when 

selecting high-fidelity samples. 

The remainder of the paper is organized as 

follows. A brief review of the basic theory of the 

proposed approach is given in Section 2. Section 3 

introduces the proposed method in detail. Three 

numerical examples and an engineering case are 

provided in Section 4 to show the applicability of the 

proposed method. Conclusions are summarized in 

Section 5. 

 

 

2  Foundational concepts 

2.1  Kriging model 

A Kriging model leverages the information from 

multiple samples to fit the original model, thereby 

enabling the estimation of responses and quantifica-

tion of uncertainties for any given sampling points 

(Krige, 1951). A Kriging model can be formulated by 
 

      ˆ ,
T

g Z x h x x  (2) 

 

where      1 ,..., k   h x h x h x  is the basis function, 

 1,..., k   is the vector of regression coefficients, 

and  Z x  is a Gaussian process characterized by a 

zero mean and a covariance 
 

      2Cov ,  ,  ,ZZ Z K  a b a b  (3) 

 

where 2

Z  denotes the variance of  Z x ;  ,  K a b  

represents the correlation function and can be com-

monly defined as multiple forms. The Gaussian cor-

relation function was used in this study because of its 

robustness and suitability (Jones et al., 1998). For an 

unknown point 
x , its predicted value  Ĝ 

x  and 

variance  2

ˆ
ˆ

G
 

x  are expressed as 
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where        
T

1T ,  ,..., ,  
p

K K   
 

r x x x x x , and 

 T -1 T 1 1u K r x . 

2.2  Multi-fidelity modeling method 

The objective of the multi-fidelity modeling 

method is to establish a mapping relationship between 

low-fidelity and high-fidelity responses by creating a 

joint model that integrates multi-source information 

(Kennedy and O’Hagan, 2000; Le and Garnier, 2014). 

In our research, we used a nonlinear autoregressive 

scheme (Perdikaris et al., 2017) to capture the rela-

tionship between multi-fidelity data because of its 

excellent nonlinear characterization performance. 

The nonlinear autoregressive scheme constructs a 

nested input structure by incorporating the response 

of low-fidelity samples into the input of the 

high-fidelity model. Compared with the MF-DGP 

scheme (Cutajar et al., 2019), the nonlinear auto-

regressive scheme trains each fidelity level model 

independently, resulting in low computational com-

plexity and flexible modeling. 

Suppose there are sample sets 

 ,  ,  1,...,m m mD Y m H X  with increasing fidelity 

m . The nonlinear autoregressive multi-fidelity model 

is given by 
 

     1,  ,m m mg Q g    x x x  (6) 
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where  mg x  is the surrogate model constructed by 

the samples with fidelity level m, and 

m
Q        T T

1 1
GP , , , , ; mm m m m

g g g
 

0 r x x x x  . 

 mQ   can more fully represent the relationship be-

tween samples with different fidelities, and its co-
variance kernel is given by 
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where 
ρmK , 

fmK  and 
δmK  are covariance functions 

and 
ρ f δ
,  ,  m m m m

 
 

     express their hyperparam-

eters.  
 
 

3  Proposed method 

 

In this section, the surrogate-based reliability 

framework using a NAMK model and active learning 

is presented. The core strategy involves establishing a 

NAMK model using the nonlinear autoregressive 

scheme, followed by iterative refinement based on 

adaptively selected new samples. Firstly, initial mul-

ti-fidelity samples are selected in the specified pa-

rameter range and an initial surrogate model is con-

structed using NAMK. In the process of model up-

dating, the position and fidelity of new samples are 

determined by a collective learning function. Once a 

high-fidelity sample is determined, a corresponding 

nested low-fidelity sample can be automatically gen-

erated according to a residual model. Finally, a stop-

ping criterion using relative error estimation termi-

nates the active learning process. Figure 1 shows a 

flowchart of the approach. 

3.1  Initial samples selection 

The distribution of initial samples largely de-

termines the performance of the surrogate model and 

the efficiency of the active learning process. When the 

initial samples are evenly filled in the design space, a 

comprehensive evaluation of the limit state function 

can be obtained. A Latin hypercube sampling method 

based on evolutionary operation (EVOP-LHS) (For-

rester et al., 2008) is used to obtain initial low-fidelity 

samples  
1m m

X  that are evenly distributed in the 

sample space. Then, an exchange algorithm (Rei-

senthel and Allen, 2014) is adopted to obtain the 

higher fidelity samples  
2,...,m m H

X  to ensure the 

nesting property and distribution uniformity among 

samples with different fidelities. 

3.2  Construction of the residual model and gen-

eration of the nested low-fidelity sample 

In the case of a multi-fidelity surrogate model, 

when a nested relationship exists between training 

samples of different fidelity levels, the model can 

provide a more precise description of the relationship 

between the samples (Perdikaris et al., 2017; Liu et al., 

2020). This nested relationship allows the model to 

capture the intricate connections and dependencies 

among the samples with greater accuracy. The nested 

relationship between training samples when x  is one 

dimensional is presented in Fig. 2a. However, extra 

calculations are needed to obtain nested low-fidelity 

samples in the process of model updating (Fig. 2b). 

In this study, a residual modeling method was 

used to generate nested low-fidelity samples. The 

core idea of residual modeling is to capture the dis-

crepancy between the high-fidelity sample response 

values 
mY  and the low-fidelity sample response val-

ues 
1mY 

 by constructing a residual model  ReF  , 

and then calculate the response of nested low-fidelity 

samples. The detailed construction process of the 

residual model can be found in the electronic sup-

plementary materials (Section S1). 

3.3  Construction of the NAMK model and calcu-

lation of the predicted response value 

The main goal of the multi-fidelity modeling 

strategy is to use nested multi-fidelity training sam-

ples  
1,...,

,  m m m H
Y


X  to capture the relationship 

 mq   between  mg x  and  1mg  x . In this study, 

the nonlinear autoregressive scheme (Perdikaris et al., 

2017) was used to establish a multi-fidelity surrogate 

model in combination with a Kriging model since it 

can effectively capture the nonlinear relationship 

between different fidelity information by incorporat-

ing an additional input into the high-fidelity model. 
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Multi-fidelity

model refining 

process

  Calculate predicted values on S and 

evaluate the failure probability       

Generate initial samples {Xm}m=1

Construct (Update) the residual model 

Generate the Monte Carlo population S  

Construct (Update) NAMK model 

Estimate the maximum error  

Is the stopping

 criterion satisfied  

End

Determine the fidelity and location 

of a new sample by the multi-

fidelity learning function 

  Update the training sample set 

NO

COV�0.05
  Update S by adding extra 

candidate design samples

YES

YES

NO

Calculate response values of nested 

samples        

Determine samples {Xm}m=2,...H,

 from  {Xm}m=1

 
Fig. 1 Flowchart of the proposed approach 

 

 
(a) Nested multi-fidelity samples 

 

 
(b) The selected sample with fidelity level m and the generated 

sample with fidelity level m-1 
 

Fig. 2 Relationships between multi-fidelity samples 

 

An initial Kriging model  1mZ    was con-

structed using the lowest fidelity sample set 

 
1

,  m m m
Y


X . After the sample set  

2
,  m m m

Y


X  of the 

higher fidelity level and predicted response values 

 1 1
ˆ

m mG  X  are obtained,  2mZ    is built by 

 

   2 2 2 1 1
ˆ, .m m m m mY Z G     X X  (8) 

 

From Eq. (8), it is known that  2mZ    can not 

only accurately predict the response values 1mX , but 

also characterize the relationship between samples 

with fidelity m=1 and m=2. 

Once  m HZ    is determined using the highest 

fidelity sample set  ,  m m m H
Y


X  and  1

ˆ
m HG  X , the 

NAMK model  m HV    is formulated by an auto-

regressive form 
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Predictive response values  ˆ
m iG x  of candidate 

samples can be calculated according to  m HV   , 

namely 
 

     1
ˆ ˆ,  ,  2,...,m i m i m iG Z G m H x x x  (10) 

 

where 
MCS,  1,...,i i Nx  are candidate samples from 

Monte Carlo population S . 

3.4  Active learning strategy 

3.4.1  Determination of new samples 

A traditional learning function usually selects 

useful samples according to the posterior mean and 

standard deviation of candidate training samples, and 

is applicable only for active learning problems with a 

single information source scenario. For multi-source 

information, the site and fidelity of samples should be 

determined in the active learning process. In addition, 

models with different fidelity have different calcula-

tion costs, so the sampling cost also needs to be con-

sidered in the process of selecting new samples. 

Therefore, a new collective multi-fidelity learning 

function consisting of three parts is proposed to select 

suitable samples. The formulation of this learning 

function is 
 

     
 

MF MF R

1
F  U C ,  , 1,...,m m m H

c m
   ，x x x (11) 

 

in which,  c m  is the function of sampling cost, 

which is used to assess the relative computational cost 

associated with samples of different fidelities, and is 

usually expressed as 
 

  
 

 

T
,  1,...,

T

m
c m m H

H
   (12) 

 

where  T   represents the calculation time required 

to obtain the sample response;  MFU x  represents 

the expected feasibility of candidate points under 

different fidelities. Its function can be obtained by 

extending U-learning function (Echard et al., 2011), 

i.e., 
 

  
 

 

ˆ

MFU , 1,...,
ˆ

mG

H

m H
G


 

x
x

x
 (13) 

 

where  ˆ
mG

 x  represents the posterior standard de-

viation of samples with fidelity level m, and  ˆ
HG x  

is the response of the highest fidelity model corre-

sponding to the current sample. Using  MFU x , these 

candidates, which are characterized by their proxim-

ity to the high-fidelity limit state function and high 

uncertainty, can be effectively identified and selected. 

 R
C ,  mx  represents the relative correlation of mul-

ti-fidelity samples, which depends mainly on the 

predicted response and posterior variance (Reisenthel 

and Allen, 2014). It can be denoted as 
 

  
 

     
R

ˆ

ˆ

C ,  ,
ˆ ˆ

m

H

G

H m G

m
G G






 
x

x

x x x
 (14) 

 

where  ˆ
HG

 x  is larger than  ˆ
mG

 x  because the 

uncertainty is transmitted along each recursive step. 

When 2m  , the predicted variance of  ˆ
mG

 x  can 

be obtained through 
 

         1 1
ˆ ˆ ˆ,  ,m m mp G p G p G d  x x x x x (15) 

 

where   1
ˆ

mp G  x  is the posterior distribution of the 

previous fidelity level and  ˆ
mG

 x  is obtained by 

calculating its confidence interval. To alleviate the 

computational burden associated with computing 

Monte Carlo integrals for all candidate samples, 

 ˆ
mG

 x  is estimated as 

 

    ( )

ˆ ˆ

1

,
m

m
q

G G
q

 


x x  (16) 

 

where  ( )

ˆ

q

G
   is the standard deviation of the Kriging 

model when the fidelity level is equal to q.  R
C ,  mx  

is applied to characterize the acceptance of 

low-fidelity samples. When m H ,  R
C ,  mx  is 

equal to 1. 
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3.4.2  Stopping criterion 

A conservative stopping criterion can result in 

unnecessary evaluations of the expensive limit state 

function, whereas premature termination of the sam-

pling process may lead to incorrect estimation of the 

failure probability. To achieve fast convergence, the 

efficient error-based stopping criterion (ESC) (Wang 

and Shafieezadeh, 2019) was extended for use in 

multi-source information scenarios. Based on the 

upper limit of the relative error, the error-based stop-

ping criterion is defined as 
 

 

f

f

f f
maxu u

f f f s

ˆ
1

ˆ ˆ
ˆmax 1 ,  1 ,

ˆ ˆˆ ˆ

N

N

N N

N S N S





 

 
    

   

(17) 

 

where fN  and fN̂  denote the number of real and 

estimated failure samples, respectively; u

fŜ  and u

sŜ  

are the upper bound of the confidence interval of fŜ  

and sŜ , respectively; max̂  is the specified threshold, 

whose detailed calculation process can be found in the 

supplementary materials (Section S2). 

3.5  Steps of the proposed method 

The details of application steps are as follows: 

Step 1: Generate initial samples  
1m m

X  by 

EVOP-LHS, and select samples  
2,...m m H

X  by the 

exchange algorithm (Forrester et al., 2007). 

Step 2: Generate the Monte Carlo population S  ac-

cording to the statistical characteristics of the design 

variables. 

Step 3: Construct (Update) the residual model  ReF   

according to current samples with different fidelity 

and their response values. 

Step 4: Calculate response values of nested samples 

based on  ReF  . 

Step 5: Construct (Update) the NAMK model using 

current samples with different fidelity and their re-

sponse values. 

Step 6: Calculate the predicted values using the con-

structed NAMK model, and estimate the failure 

probability by   
MCS

f

1MCS

1 ˆˆ
N

H i

i

p I G
N 

  x , where 

  ˆ 0H iI G x  when  ˆ 0H iG x ,   ˆ 1H iI G x  

when  ˆ 0H iG x . 

Step 7: Estimate the maximum error according to S . 

Step 8: Check the stopping criterion. If the stopping 

condition is met, proceed to Step 10; otherwise, return 

to Step 9. 

Step 9: Determine the location and fidelity of the new 

sample by     MF

new new

, 

F  , argmax
m

mm  ，
x

xx , and 

update the training sample set. 

Step 10: Check the coefficient of variation by 

f

MCS f

ˆ1
COV

ˆ

p

N p


 . If COV 0.05 , turn to Step 12; 

otherwise, return to Step 11. 

Step 11: Update S  by adding extra candidate sam-

ples, and turn to Step 2. 

Step 12: Report fp̂ . 

 

 

4  Case studies 
 

To assess the accuracy and efficiency of the 

proposed approach, we investigated three numerical 

cases of variable complexity, as well as an engineer-

ing case. The code was implemented in MATLAB, 

and the Kriging model was constructed using the 

DACE toolbox (Lophaven et al., 2002). Several 

state-of-the-art methods for reliability analysis 

methods based on surrogate modeling were adopted 

for comparison: (1) EGRA (Bichon et al., 2008), (2) 

AK-MCS+U (Echard et al., 2013), (3) REAK (Wang 

and Shafieezadeh, 2019), (4) AKOIS (Zhang et al., 

2020), (5) mfEGRA (Chaudhuri et al., 2021), and (6) 

AMK-MCS+AEFF (Liu et al., 2020). The efficiency 

of these methods was compared in terms of the av-

erage cost considering all fidelity samples, and their 

accuracy was quantified using the average relative 

error of failure probability, which can be character-

ized as 
 

 
r

MCS

f f

r

1
ˆ ,

n

i

p p
n

    (18) 

 

Une
dit

ed



|  J Zhejiang Univ-Sci A (Appl Phys & Eng)   in press 8 

where 
rn  is the number of repeated calculations. To 

achieve a robust result, all methods were performed 

10 times for each case. 

4.1  Example 1: multimodal function 

In this example, the multimodal function 

(Bichon et al., 2008), a classical test function in the 

field of reliability, was used to demonstrate the active 

learning process in detail and assess the effectiveness 

of the proposed method. The high-fidelity model of 

the limit state function is defined by 
 

  
  2

1 2 1
3

4 1 5
2 sin ,

20 2

x x x
f

   
    

 
x  (19) 

 

where 1x  and 
2x  are normally distributed with a 

mean value of  1.5,  2.5  and a variance of  1,  1 . The 

two low-fidelity models (Chaudhuri et al., 2021) were 

represented as 
 

     1 2
2 3

5 5 5
sin ,

22 44 4

x x
f f

 
    

 
x x  (20) 

     1 2
1 3

5 5 35
3sin .

11 11 11

x x
f f

 
    

 
x x  (21) 

 

Assume that the cost of each fidelity model re-

mains the same throughout the domain. The costs are 

 3 1c  ,  2 0.1c  , and  1 0.01c  , respectively 

(Marques et al., 2018). The contour plots of three 

fidelity models in the demonstration case and the limit 

state function of each model are shown in Fig. 3. 

Figure 4 shows several iterations of the random 

running sequential process of the proposed scheme. 

Figure 4a depicts the position of the initial samples 

with variable fidelity. The proposed method firstly 

generates 24 samples with fidelity level 1m   from 

the design space  5 ,  5      by EVOP-LHS 

and then selects 12 samples with fidelity level 2m   

and 6 samples with fidelity level 3m   by the ex-

change algorithm. Figures 4b-4e show the process of 

selecting new samples, generating nested samples and 

the iterative process of the contour. As illustrated in 

Figs. 4b and 4c, the proposed method tends to priori-

tize the selection of low-fidelity samples in the initial 

iterations due to the limited knowledge of the limit 

state. This cautious approach allows for a broader 

exploration of the design space and facilitates the 

acquisition of crucial information about the system’s 

behavior. However, as understanding of the limit state 

deepens, the method gradually shifts towards select-

ing high-fidelity samples in the later iterations, as 

observed in Figs. 4d and 4e. This adaptive sampling 

strategy allows the method to focus on areas of higher 

uncertainty and refine the surrogate model for more 

accurate predictions. In addition, because of the 

 MFU x , the points explored in the active learning 

process are concentrated mainly near the limit state, 

which is conducive to more accurate evaluation of the 

failure probability. Consequently, the limit state plane 

evaluated by the NAMK model accurately tracks the 

actual failure boundary (Fig. 4e). The performance of 

the proposed approach was compared with MCS, 

EGRA, AK-MCS+U, REAK, AKOIS, mfEGRA, and 

AMK-MCS+AEFF. The results of these comparisons 

are summarized in Table 1. 

   
(a) Fidelity level 3m   (b) Fidelity level 2m   (c) Fidelity level 1m   

Fig. 3 Contours of  
m

f x  using the three fidelity models for the multimodal function (solid red lines represent the limit 

state plane) 
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(a) Iteration 0 (b) Iteration 5 (c) Iteration 10 

  

 

 

(d) Iteration 15 (e) The last iteration (Iteration 21)  

Fig. 4 The iteration process of the proposed method on the multimodal function 

 

Table 1 Results of different methods for the multimodal function 

Methods Cost  2

f
ˆ 10p   COV (%) Error (%) 

MCS 610  3.13 0.56 - 

EGRA 49.3 3.14 3.93 0.24 

AK-MCS+U 39.2 3.13 3.93 2.84× 210  

REAK 28.6 3.14 3.92 0.74 

AKOIS 30.8 3.16 3.90 1.13 

mfEGRA 15.24(12.1+26.6×0.1+47.9×0.01)  3.09 3.96 1.45 

AMK-MCS+AEFF 14.9(10.3+46×0.1) 3.12 3.93 1.15 

Proposed method 12.90(10.9+16.1×0.1+39.2×0.01) 3.12 3.89 0.97 

 

As listed in Table 1, the cost of the proposed 

method was 12.90, which was the lowest among all 

methods. The relative error of the proposed method 

was only 0.97%, which was smaller than those of 

AKOIS, mfEGRA, and AMK-MCS+AEFF. The 

method’s relative error was merely 0.97%, outper-

forming AKOIS, mfEGRA, and AMK-MCS+AEFF 

in accuracy. Notably, while AK-MCS+U achieved 

high accuracy, its computational cost of 39.2 was 3.04 

times higher than that of our method. Compared to 

single-fidelity active learning methods such as EGRA 

and REAK, our method significantly reduced the cost 

while maintaining similar accuracy levels. To further 

prove the robustness of the proposed method, Fig. 5 

shows boxplots of all the listed methods in terms of 

total cost and relative error. Our proposed method 

showed good stability in both efficiency and accuracy 

due to the use of the error-based stopping criterion. 

4.2  Example 2: 4-D PARK function 

For the second example, we used the 4-D PARK 

function (Cutajar et al., 2019) to validate the effec-

tiveness of the proposed method in highly nonlinear 

problems. The 4-D PARK function can be expressed 
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as 
 

 
   

   

21 4
2 2 3 2

1

1 4 3

1 1
2

3 exp sin 1 2,

x x
f x x

x

x x x

 
    

  

     

x
 (22) 

 
 

 
 1

1 2

2 2

2 3 1

sin
1

10

2 0.5,

x
f f

x x x

 
  
 

   

x x
 (23) 

 

where  2f x  is the high-fidelity model, and  1f x  

is the low-fidelity model, all inputs obey the uniform 

distribution of  0,  1 , and the costs are set to  2 1c   

and  1 0.1c  , respectively. The running results of 

the different methods applied to this example are 

shown in Table 2. 

Table 2 shows that our proposed method effec-

tively leverages multi-fidelity samples to establish a 

precise mapping between low-fidelity and 

high-fidelity samples, thereby significantly reducing 

computational overhead and delivering accurate fail-

ure probability estimates. In terms of efficiency, our 

method surpassed all others, incurring a calculation 

cost of only 28.70. Regarding accuracy, while the 

calculation error of our method was marginally higher 

than those of AK-MCS+U, REAK, and AKOIS, its 

computational cost was 48.0%, 67.1%, and 60.7% 

lower, respectively. Furthermore, due to the pro-

nounced nonlinear relationship between the 

high-fidelity and low-fidelity models, mfRGRA and 

AK-MCS+U failed to achieve satisfactory accuracy, 

highlighting the importance of accurately capturing 

the nonlinear relationship in multi-fidelity modeling. 

  
(a) Cost of different methods 

 

(b) Relative error of different methods 

 

Fig. 5 Boxplots of cost and relative error of different methods 

 
Table 2 Results of different methods for the 4-D PARK function 

Methods Cost  2

f
ˆ 10p   COV (%) Error (%) 

MCS 1× 610  3.86 0.50 - 

EGRA 72.2 3.92 3.50 2.01 

AK-MCS+U 59.8 3.86 3.52 0.13 

REAK 42.8 3.87 3.52 0.36 

AKOIS 47.3 3.84 3.54 0.48 

mfEGRA 40.15(30.6+95.5×0.1)  3.73 3.60 5.80 

AMK-MCS+AEFF 38.71(29.8+89.1×0.1)  3.81 3.55 2.13 

Proposed method 28.70(22.5+62.0×0.1)  3.85 3.54 0.51 
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4.3  Example 3: vehicle side impact problem 

In this section, we assess the accuracy and effi-

ciency of the proposed scheme in tackling complex 

problems by using the vehicle side impact problem 

(Youn et al., 2004 and Yi et al., 2021) as a case study. 

This problem is characterized by a 7-dimensional 

limit state function, which can be represented as 
 

  2 1 4 2 3 5 6

2

5 7 7

0.489 0.843 0.0432

0.0556 0.00078 0.75,

f x x x x x x

x x x

  

  

x  (24) 

 
      

  

  

  

 

1 2 1 4

2 3

2 3

5 7

7

1
0.489 0.1 0.1

10

0.843 0.1 0.1

0.0432 0.1 0.1

0.0556 0.1 0.1

0.00078 1 ,

f f x x

x x

x x

x x

x

   

  

  

  

 

x x
(25) 

 

where  2f x  is the high-fidelity model, and  1f x  

is the low-fidelity model. The statistical characteris-

tics of x  are shown in Table 3, and the costs were set 

to  2 1c   and  1 0.05c   (Yi, et al., 2021), re-

spectively. Table 4 summarizes the running results of 

different methods applied to this problem. 

Table 4 shows that, compared to other sin-

gle-fidelity active learning methods, the calculation 

error of our proposed method was 1.19%, slightly 

exceeding that of AK-MCS+U, REAK, and AKOIS, 

but its cost was obviously reduced. Furthermore, 

owing to the NAMK model’s efficient capture of the 

nonlinear relationship between multi-fidelity samples, 

our method outperformed other multi-fidelity mod-

eling methods, including mfEGRA and 

AMK-MCS+AEFF, in both computational cost and 

efficiency. Figure 6 provides a comparison of the 

convergence of the relative error of failure probability 

for the different methods. Our proposed method 

achieved a lower relative error level with a relatively 

small number of calculations, indicating its superior 

convergence performance in this case. 
 

Table 3 Distributions and parameters of x of the vehicle side impact problem 

Variables Mean Standard deviation Distribution Description 

1x  1.38 0.3 Normal Floor side inner 

2x  1.38 0.3 Normal Door beam 

3x  1.38 0.3 Normal Door beltline 

4x  1.38 0.3 Normal Roof rail 

5x  0.3 0.06 Normal Floor side inner 

6x  0 10 Normal Barrier height 

7x  0 10 Normal Barrier hitting 

 
Table 4 Results of different methods for the vehicle side impact problem 

Methods Cost  4

f
ˆ 10p   COV (%) Error (%) 

MCS 5× 610  1.64 3.49 - 

EGRA 79.9 1.74 3.39 6.86 

AK-MCS+U 91.8 1.65 3.49 0.55 

REAK 65.2 1.62 3.51 1.09 

AKOIS 58.0 1.65 3.48 0.82 

mfEGRA 53.9(48.4+109.3×0.05)  1.60 3.54 2.41 

AMK-MCS+AEFF 49.5(42.6+137.2×0.05)  1.61 3.52 1.28 

Proposed method 37.6(33.6+80.4×0.05)  1.67 3.48 1.19 
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Fig. 6 Relative error of failure probability of different methods (shown in log-scale) 

 

4.4  Engineering application: aircraft tubing 

Tubing assembly is widely used in aircraft sub-

systems (e.g., hydraulic systems, fuel systems, and 

environmental control systems) and significantly 

influences aircraft reliability and safety. In this case, 

we investigated the reliability analysis of the overall 

stability of aircraft tubing (Li and Wang, 2019) to 

demonstrate the practicality of the proposed method 

in engineering problems. The structural profile of the 

tubing is visually depicted in Fig. 7, illustrating its 

geometric configuration and layout. Additionally, 

Table 5 provides an overview of the statistical char-

acteristics associated with the structural parameters 

relevant to the tubing. The tubing is constructed from 

steel material with a Poisson’s ratio of 0.27 and 

Young’s modulus of 200 GPa, and a pressure of 

pa33 MP   was applied to the inner surface. The 

critical threshold of failure was defined as a maxi-

mum total deformation of tubing greater than 

0.01mm. 
 

 
(a) Aircraft fuel system 

 
(b) Geometry of the aircraft tubing 

Fig. 7 Aircraft tubing 

 
In this work, the finite element method (FEM) 

was used to obtain the maximum deformation of the 

tubing. In the analysis of the tubing assembly, two 

different mesh configurations were used: a fine mesh 

and a coarse mesh. The solution obtained from the 

fine mesh was considered the high-fidelity model, 

which provided more accurate and detailed results. 

The solution obtained from the coarse mesh was re-

garded as the low-fidelity model, which provided 

approximate results with reduced computational cost. 

The commercial software ABAQUS was used to 

carry out the finite element analysis. For the 

high-fidelity model, a mesh consisting of 18,432 

elements was used to ensure accurate results. Con-

versely, a mesh model with only 880 elements was 

used as the low-fidelity model to facilitate faster 

computations. The mesh of the high-fidelity model is 

depicted in Fig. 8a, while that of the low-fidelity 

model is shown in Fig. 8b.  
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Figure 9 illustrates the simulation results ob-

tained from the different fidelity models. Similar 

displacement distributions in Figs. 9a and 9b indicate 

that using the low-fidelity model was a reasonable 

simplification method. Moreover, the high-fidelity 

and low-fidelity model simulation times were 17.2 s 

and 2.1 s, respectively. Therefore, the costs were set 

to  2 1c   and  1 1/ 8c  , respectively. Table 6 

presents the results of the different methods for reli-

ability analysis of aircraft tubing. 

From the results provided in Table 6, we con-

clude that our proposed method had the best effi-

ciency among all the methods. In terms of the calcu-

lation error, the relative error of our proposed method 

was 1.07%, which was only slightly larger than that of 

AK-MCS+U and REAK, and their calculation costs 

were several times that of our proposed method. In 

summary, our proposed method showed excellent 

performance in this engineering application. 

Table 5 Statistical characteristics of variables of the aircraft tubing 

Variables Meaning Mean (mm) Standard deviation (mm) Distribution 

D  Inner diameter 17 0.2 Normal 

T  Thickness 2.98 0.05 Normal 

R  Radius of bending 2.93 0.11 Lognormal 

L  Length 3.56 0.012 Lognormal 

 

  
(a) High-fidelity finite element model 

 

(b) Low-fidelity finite element model 

 

Fig. 8 The mesh grids of the high-fidelity model and low-fidelity model 

 

  
(a) Simulation of the high-fidelity model 

 

(b) Simulation of the low-fidelity model 

 

Fig. 9 The simulation results of the high-fidelity model and low-fidelity model 
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Table 6 Results of different methods for the aircraft tubing problem 

Methods Cost  2

f
ˆ 10p   COV (%) Error (%) 

MCS 1× 410  4.92 4.41 - 

EGRA 43.9 4.72 4.51 5.09 

AK-MCS+U 38.5 4.93 4.39 0.66 

REAK 34.1 4.95 4.36 0.80 

AKOIS 37.9 4.96 4.35 1.12 

mfEGRA 26.2(20.6+44.8×1/8)  4.87 4.64 2.10 

AMK-MCS+AEFF 23.6(17.6+48.2×1/8)  4.96 4.36 1.41 

Proposed method 18.8(14.7+32.6×1/8)  4.90 4.43 1.07 

 

5  Conclusions 
 

In this paper, we propose a novel nonlinear au-

toregressive multi-fidelity Kriging-based method 

with active learning for efficient and accurate relia-

bility analysis. This method leverages NAMK mod-

eling to accurately capture nonlinear relationships 

between multi-fidelity samples. This can improve the 

generalization performance of a surrogate model. An 

multi-fidelity learning function considering the cor-

relation and sampling cost of various fidelity samples 

can adaptively determine the position and fidelity of 

the new sample. When a high-fidelity sample is se-

lected by the learning function, the constructed re-

sidual model used to generate a nested low-fidelity 

sample reduces the calls of the low-fidelity model. 

The performance of the proposed method was 

verified using three benchmark numerical examples 

of variable complexity, as well as an engineering 

example. Compared to EGRA, AK-MCS+U, REAK, 

and AKOIS, the proposed method showed effective 

use of multi-source information, resulting in a sig-

nificant reduction in the number of high-fidelity 

samples while maintaining calculation accuracy. Ad-

ditionally, the proposed method exhibited improved 

accuracy in capturing the nonlinear relationship be-

tween samples of different fidelity compared to 

mfEGRA and AMK-MCS+AEFF. Moreover, during 

the model updating process, the proposed method 

required fewer low-fidelity samples compared to 

mfEGRA and AMK-MCS+AEFF. These advantages 

make the proposed method a promising approach for 

handling reliability analysis problems. 

Although the proposed method has proven ef-

fective for general reliability analysis problems, its 

use could be further extended to address hybrid reli-

ability analysis problems that involve both random 

and interval variables. Moreover, the basic framework 

of the proposed method could be enhanced by in-

corporating dimension reduction methods (Zhou and 

Peng, 2020; Ji et al., 2022) to address 

high-dimensional reliability analysis problems. 
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捉数据相关性导致的计算成本增加与未充分考

虑不同保真度样本之间非线性关系导致的模型

精度低问题，本文提出了一种结合多保真建模和

主动学习的可靠性分析方法，旨在实现高效且准

确的失效概率估计。 

创新点：1. 基于非线性自回归方案并构建了一种非线性自

回归多保真克里金（NAMK）模型；2. 在模型更

新过程中，用集成的多保真学习函数代替传统的

学习函数，通过综合考虑采样成本和多保真样本

之间的相关性，从多保真样本空间中选择新的采

样点；3. 当选择高保真样本时，使用残差模型生

成嵌套的低保真样本。 

方 法：1. 在指定的参数范围内选择初始多保真样本，并

使用 NAMK 构建初始代理模型；2. 通过集成学

习函数确定新样本的位置和保真度；3. 一旦选择

了一个高保真样本，根据残差模型生成嵌套的低

保真度样本并根据新的样本更新模型；4. 使用基

于相对误差估计的停止准则终止主动学习过程

并输出失效概率估计结果。 

结 论：1. 提出了一种基于多保真建模和主动学习的可靠

分析方法，提高了失效概率估计的效率和精度；

2. 利用 NAMK 模型来捕捉多保真样本之间的非

线性关系，有效提高了代理模型的准确性；3. 考

虑多保真样本的相关性和采样成本的学习函数

能自适应地确定新样本的位置和保真度；4. 当学

习函数选择高保真样本时，通过构造残差模型生

成嵌套的低保真度样本，减少了低保真度模型的

调用次数。

关键词：可靠性分析；多保真代理模型；主动学习；非线

性；残差模型 
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