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Abstract: Marine power-generation diesel engines operate in harsh environments. Their vibration signals are highly complex and
the feature information exhibits a non-linear distribution. It is difficult to extract effective feature information from the network
model, resulting in low fault-diagnosis accuracy. To address this problem, we propose a fault-diagnosis method that combines the
Gramian angular field (GAF) with a convolutional neural network (CNN). Firstly, the vibration signals are transformed into 2-D
images by taking advantage of the GAF, which preserves temporal correlation. The raw signals can be mapped to 2-D image
features such as texture and color. To integrate feature information, the images of the Gramian angular summation field (GASF)
and Gramian angular difference field (GADF) are fused by the weighted-average fusion method. Secondly, the channel attention
mechanism and temporal attention mechanism are introduced in the CNN model to optimize the CNN learning mechanism.
Introducing the concept of residuals in the attention mechanism improves the feasibility of optimization. Finally, the
weighted-average fused images are fed into the CNN for feature extraction and fault diagnosis. The validity of the proposed method
is verified by experiments with abnormal valve clearance. The average diagnostic accuracy is 98.4%. When -20 < SNR
(Signal-to-noise ratio) < 20 dB, the diagnostic accuracy of the proposed method is higher than 94.0%. The proposed method has
superior diagnostic performance. Moreover, it has a certain anti-noise capability and variable-load adaptive capability.
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accelerates the wear and corrosion of valves and valve
seats. Therefore, troubleshooting the valve mechanism

1 Introduction

The power-generation diesel engine is an
essential piece of equipment for ships. In addition to
providing electricity, it is widely used for electric
propulsion. Recently, there has been a lot of interest in
fault diagnosis of key diesel engine components (Cai
et al., 2020; Caglar and Yasin, 2022; Rao et al., 2022).
The air-distribution mechanism operates in a harsh
environment, especially the valves and seats. They are
directly connected to the combustion chamber and
often exposed to high temperatures and pressures. The
valve train is one of the main moving parts. It directly
affects the power and combustion economy of the
diesel engine. The opening and closing of the air
valves cause periodic shocks to the valve seats. In
addition, particulate matter from combustion
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is essential.

Traditional intelligent fault-diagnosis methods
require human extraction of feature information, such
as time-domain information, frequency-domain
information, or time-frequency-domain information
(Nayana and Geethanjali, 2017; Dhamande and
Chaudhari, 2017; Sun et al., 2022). This feature
information is fed into a classifier for fault
classification. Machine-learning methods commonly
used include support vector machines (Song et al.,
2023) and random forests (Mariela et al., 2016). In
practical engineering, feature selection and extraction
depend on professional knowledge. Manually
extracted fault features do not fully reflect the features
of mechanical vibration signals (Peng et al., 2020).
Data that can reflect the health status of diesel engines
are characterized by their large volume, diversity, and
low-value density (Qian et al., 2022; Hoang and Kang,
2018). This makes it challenging for traditional
intelligent methods to meet the needs of fault
diagnosis using big data. With the rapid development
of artificial intelligence, deep learning is gaining
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popularity in fault diagnosis (Zhao et al., 2019). Deep
learning offers the capacity to learn complex
non-linear relationships (Schmidhuber, 2015) and
overcomes the disadvantages of shallow learning. The
gearbox faults are successfully classified using data
fusion and multiple classifiers (Senanayaka et al.,
2019). Continuous wavelet transforms (CWT) (Du et
al., 2022) are used to transform signals into 2-D
images (Fu et al., 2023). They are input into a CNN to
obtain fault diagnosis. However, CWT requires
manual selection of the basis function, and its
accuracy will vary depending on the choice of the
basis function (Guo et al., 2020; Manarikkal et al.,
2021). Alsalaet et al. (2023) used normalized feature
maps as the input to a CNN to achieve bearing fault
diagnosis. Hu et al. (2023) input acoustic emission
signals into a CNN model to perform fault diagnosis of
exhaust-valve leakage. He et al. (2022) designed a
signal fusion model based on transfer learning to
realize fault diagnosis of an axial piston pump.
Inspired by the idea of multi-scale feature extraction,
Xie et al. (2023) designed a multi-scale convolutional
layer and incorporated a hybrid attention mechanism
to achieve fault diagnosis of rolling bearings.
Meanwhile, Xu et al. (2022) used a combination of a
multi-scale CNN, feature-enhancement module, and a
joint attention mechanism to perform fault diagnosis
on rotating machinery.

The aforementioned scholars have conducted
outstanding research on CNN-based fault diagnosis.
However, diesel-engine vibration signals present
non-linear characteristics and contain a large amount
of background noise. Often only part of the data in the
overall signal (e.g., continuous-pulse signal segments)
contains key information, and data not related to faults
can interfere with the learning of the network model.
This has led to many CNN models that improve
diagnostic accuracy through complex structures (Wen
etal., 2019; Pan etal., 2021). Not only does this lead to
problems such as high model computation and
performance degradation, it also limits the model’s
ability to generalize when working conditions change.
Accurate and efficient air-valve fault diagnosis can
effectively improve combustion economy and ensure
normal power output of diesel engines. Inspired by
previous studies, in this paper we propose a new
valve-clearance fault-diagnosis method. The main
contribution points are as follows:

1. The vibration signals are transformed into 2-D
images with temporal correlation by the GAF. In this
way, 2-D images can maintain absolute correlation
with time and provide different levels of information

granularity.

2. The weighted average fusion algorithm is
used to fuse 2-D images. This further portrays the
invisible information in the signals and maximizes
use of the signals' feature information.

3. A multi-attention mechanism is embedded
into the CNN model to improve its ability to capture
critical information and adaptively enhance the
fault-feature response.

2 Background theory
2.1 The Gramian angular field (GAF)

The GAF (Cui et al., 2022) uses the idea of
coordinate transformation to convert signals into 2-D
images. Given a time series X = {x1,x,, ..., X}, itS
transformation process is as follows:

(1) Normalise the series to the interval [-1,1].

The calculation formula is:

Xi:(xi—minx)+(xi_—maxx) (1)
max X —min X

(2) %; is mapped as angle and t; is mapped as
radius:

¢ =arccos X ,—1< X <1,%eX
t, )

r=—
N

where t; isatime stamp and N is a constant.

(3) Two images can be obtained. Eq. (3) is the
formula for the GASF. Eq. (4) is the
formula for the GADF.

cos(¢, +¢,) -+~ cos(é +¢,)
COS(¢2 + ¢1) "COS(¢2 + ¢n)

Gyt = : X X AIox A=

cos(¢, +¢)---cos(¢, +¢,)

Sin(d —d) -+ sin(4 - 4,)

sin(g, — ) +-sin(¢, - ;) . (4)
Gt = “1=x* x=x"1=x’

sin(g, —4)-+-sin(¢, - ¢,)
where I = [1,1,... ,1].

If the times series is too long, a

high-dimensional matrix is generated. This increases
the amount of computation. Therefore, piecewise

©)



aggregate approximation (PAA) (Ren et al., 2018) is
used. After dividing the series into equal length
sub-series and averaging them to represent the raw
series, the raw series information can be retained and
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the sequence length is reduced. Fig. 1 shows the
process of transforming the signal into a 2-D image
with the GAF.

Polar coordinate conversion

GADF

Fig. 1 GAF conversion process

2.2 Image fusion

Frequency information was extracted in the
GASF and GADF 2D matrices and represented by
density histograms (see Fig. 2). GASF and GADF
had different distributions. To make the best use of
feature information, the two images were fused using
the weighted average fusion method (Ren et al.,
2022). The weighted average fusion is calculated as
follows:

1,(x,y) (xy)el,
(% Y) =@ (XL + o, )LKY) (Ky)elnl) (5)
1,(xY) (xy)el,
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where I,(x,y) and I,(x,y) are images to be fused.
w1(x,y) and w,(x,y) are the weights when adding
the corresponding pixel values of images I;(x,y)
and I,(x,y), respectively. wy, w,€[0,1], w; + w, =
1. di(x,y) and d,(x,y) indicate overlapping area
boundaries. d,(x,y) + d,(x,y) = W.

Fig. 3 shows the fusion process for the two
images, which complements and integrates the
feature information. This method provided sufficient
feature information for the network model.
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Fig. 2 The density histogram of GASF and GADF: (a) GASF matrix density histogram; (b) GADF matrix density histogram
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GASF

GADF

Weighted average fusion image

Fig. 3 Image-fusion process

2.3 Multi-attention mechanism

In CNN training, a large amount of channel
information is generated. This feature information has
unequal value, which affects the CNN training
process and classification accuracy. Therefore, we
introduced the channel attention mechanism model
(Wang et al., 2020) and improved it for the purposes
of this study. The features were first subjected to
maximum and average pooling. The global
information was compressed into the channel
dimension to establish the information relationship
between channels. After pooling, the feature
information was fed into the squeezed-excitation
network. The information for each channel was
compressed into a weight that represented the global
information response of the channel. By adjusting the

dimensionality reduction factor (r), we were able to
discard unimportant feature information.

The input matrix is X € RFXXL H is the
number of channels, and L is the length. c €

R"/m™1x1 js the intermediate vector. The output of
the squeezed-excitation network can be summed to
obtain the vector ¢’ € R#*1%1, The output is:
C =Xo(c) (7

The concept of residual was introduced in
channel attention mechanism. By this method, the
original information is retained to improve the
feasibility of optimizing the network. Connected by

residuals, the output is €' = X + C. Fig. 4 shows the
channel attention mechanism.

Squeeze-and-Excitation
Network

-

R

- -
|
|
-

| Averagepooling

____l____l

ll: MOSAAS

Fig. 4 Channel attention mechanism

The temporal attention mechanism (Tian et al.,
2022) determines the signal segment of the fault
feature information. The premise is to retain the
original distribution of feature information in the
temporal dimension. Pooling operations inevitably
result in the loss of some feature information.
Therefore, we introduced the 1x1x1 convolution
operation to obtain the weights of the feature
information in the time dimension. Feature
information can be mapped non-linearly to higher
dimensions. The weight wvector obtained was
t € R¥™L ' which had been processed by the

channel attention mechanism.

Both attention mechanisms used the sigmoid
function to generate modulation weights. These were
multiplied by the original signal to obtain:

T=C'o(t)= C'O‘(Wilyj % Cil,j '+ b} )] (8)

where €' is the input matrix, w/;" and b/’ are the
weight and deviation generated by the convolution

operation.
The residual idea was similarly introduced in



temporal attention mechanism. T' = €' +T. Fig. 5
shows the temporal attention mechanism.
In designing the model, the channel attention
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mechanism and time attention mechanism were
successively arranged to extract the features of key
channels and key signal segments, respectively.
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Fig. 5. Temporal attention mechanism

3 Experimentation and analysis
3.1 Experimental setup

The experimental equipment was a 4135AC
marine power-generation diesel engine. Table 1
shows the main parameters and the diesel engine
phase diagram is shown in Fig. 6. The vibration
acceleration sensor model was [INV9822, a
general-purpose piezoelectric acceleration sensor.
Due to the magnetic seat, the acceleration sensor and
the diesel cylinder head could be magnetically
attached. The sensitivity of the vibration was 100
mV/g and the sampling time and sampling frequency
were 10 seconds and 20.48 kHz, respectively. The
sampling interval was 30 seconds. The data-collector
model was INV3062. The vibration sensors were
mounted between the intake and exhaust valves of the
diesel engine, which minimized interference from
adjacent cylinders. The opening and closing moments
of the intake and exhaust valves were different for
different cylinders. We used a sensor (type SZB-16L)
to collect the top dead center (TDC) signal. Based on
the TDC signal and the phase diagram of the diesel
engine, we were able to determine the opening and
closing times of the intake and exhaust valves for
each cylinder. The sensor arrangement and valve
clearance are shown in Fig. 7. During the experiment,
vibration signals were collected for each cylinder. In
the data-processing and fault-diagnosis process, we
used the vibration signal of the 1% cylinder as an
example for analysis. Because the screw was hollow,
its main function was to hold the cylinder-head cover
in place. Passing the sensor through it did not damage

or interfere with the structure of the engine. The
fault-simulation experimental scheme is shown in
Table 2; the vibration signals of the normal and
abnormal valve clearance of the diesel engine were
acquired at rated speeds of 1500 r/min and 75% load,
respectively.

Table 1 The main parameters of the diesel engine

Machine number A0422497
Cylinder diameter 135 mm
Intake-valve clearance 0.25 mm
Exhaust-valve clearance 0.30 mm
Stroke 150 mm
Continuous power 66.2 KW

Table 2 The fault-simulation experimental scheme

Label Fault type Valve clearance (mm)
R1 Normal 0.25 (intake), 0.30 (exhaust)
R2 0.15

Abnormal
R3 intake-valve 0.35
R4 clearance 0.65
R5 0.20
Abnormal
R6 exhaust-valve 0.45
R7 clearance 0.70
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\ 1% cylinder
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3.2 Signal analysis

After collecting the vibration signals for the
different health states, we used the normal state and
abnormal exhaust-valve clearance as examples.
Referring to the diesel engine phase diagram and the

—» Magnetic seat

(c)
Fig. 7 Arrangement of sensors and valve clearance: (a) vibration sensors; (b) TDC sensor; (c) valve clearance

TDC signal, the time-domain diagram of an operating
cycle for the 1% cylinder is shown in Fig. 8. Both
combustion and valve opening and closing moments
transmit significant shock signals to the cylinder head.
The change in valve clearance affects the opening and
closing time, motion speed, and acceleration of the



valve. This in turn affects the impact and energy of
the valve when it is seated. Fig. 8a-8b shows that the
time-domain waveform when the exhaust-valve
clearance was slightly abnormal was not much
different from the normal waveform. There was no
significant change in the shock of the exhaust valve
to the valve seat. According to the information shown
in Fig. 8c, when the exhaust-valve clearance was
seriously abnormal, the valves opened late and closed

J Zhejiang Univ-Sci A (Appl Phys & Eng) in press 7

early. The amplitude was up to 431 m/s=2two to three
times higher than normal. This reflected the dramatic
rise in signal shock and energy. The valve clearance
may be slightly abnormal in practical engineering. It
is difficult to determine whether abnormal valve
clearances have occurred through the time-domain
waveform. Hence, further processing of the vibration
signals was necessary.
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Fig. 8 Time-domain diagram of normal condition and abnormal exhaust-valve clearance: (a) R1; (b) R6; (c) R7

To link computer vision and fault diagnosis, we
transformed the original signals into 2-D images. Fig.
9 shows the results of 2-D image conversion for the
four health states. When the valve clearance was
abnormal, the texture, and color features of the 2-D
image were more complex. This was due to the
increased excitation force and excitation energy on
the valve seat. When the amplitude was small, the
crossover feature with lighter color appeared in the

feature map. The vertical and horizontal highlighting
bands indicate rapid changes in amplitude. The shock
from the opening and closing of the valve was well
retained. Figs. 9 panels a, f, and g indicate normal,
slightly  abnormal, and severely abnormal
exhaust-valve clearance, respectively. The vibration
signals are converted into 2-D images, the vibration
shock of slightly abnormal exhaust-valve clearance
can also be indicated. This overcomes the defect of
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the  time-domain signals not being very
distinguishable. With the GAF method, the time
series is uniquely mapped in the coordinate
transformation and the integrity of the signal is
preserved. The fused images of different health states
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had marked differences in texture, color, and other
features. This provided the basis for the CNN to
extract feature information and perform fault
diagnosis.

Fig. 9 Two-dimensional images of the four health states: (a) R1; (b) R2; (c) R3; (d) R4; (e) R5; (f) R6; (g) R7

3.3 CNN structure and parameter selection

The deep learning setup included an AMD
Ryzen 7 5800H CPU@3.2GHz, NVIDIA GeForce
RTX 3060 Laptop GPU, and the winll operating
system. In a squeeze-incentive network with a
channel-attention mechanism, the value of the
dimensionality reduction factor (r) needs to be

discussed. The r selectable values were 4, 8, 16, 32,
and 64. The results of different r values are shown in
Table 3. When r changed from 4 to 64, the training
time dropped by 125 seconds and diagnostic accuracy
decreased by 2.78%. Therefore the value of r had
little effect on model performance. We set the value
of r to 4.

Table 3 Comparison of results for different dimensionality-reduction coefficients

r Training time (s) Number of model parameters Accuracy (%)
(>10°)
4 351 0.94 66.35
8 327 0.71 64.51
16 268 0.59 64.26
32 243 0.53 64.18
64 226 0.51 63.57

Hyperparameters can affect CNN performance,
so one should set the learning rate, MaxEpoch, and
other parameters in advance. We will use the learning
rate and MaxEpoch as examples to show the
hyperparameter setting process. The optional range of
the learning rate was 0.0001, 0.001, 0.01. The
performance of the CNN is shown in Fig. 10. When

the range was 0.001, the CNN had the highest
accuracy and shortest running time, so we chose this
value. The optional value of MaxEpoch is 20, 30, 40,
50, 80. The results of the experiment are shown in
Fig. 11. When MaxEpoch = 20, the network model
required less time and had high diagnostic accuracy.
Therefore, we chose this value for the experiment.



The other parameters were set with a similar
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process. Table 4 shows the hyperparameters. The

CNN model had 17 layers and its structure is shown
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Slover
Table 4 Optimal values for the main hyperparameter MaxEpochs
settings
L2Regularization 0.004 MiniBatchSize
LearnRateDropFactor 0.05
Table 5 The CNN structure and main parameters
Name Structure parameters Output size
Image input 64>64>3 64>64>3
Conv_1 32@2x2, Stride=[1], 67>67>32
Padding= [2]
Batchnorm_1 - 67>67>32
Maxpool_1 343, Stride= [2], padding= 333332
[0]

Multi-attention 64@1x1x1 (Time attention 33>33>32

mechanism_1 mechanism)
Relu_1 ReLu 33>33>32
Conv_2 32@3>33, Stride=[1], 35535532

Padding= [2]
Batchnorm_2 - 35>35x32
Maxpool_2 333, Stride= [2], Padding= 171732
[0]

Multi-attention 128@1 11 (Time attention 171732

mechanism_2 mechanism)
Relu_2 ReLu 171732
Fc 1 - 11100
Relu_3 RelLu 11100
Dropout 0.5 11100
Fc_2 - 1X17
Softmax - 117
Class output - 117
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Fig. 11 Experimental results with different MaxEpoch values: (a) training accuracy; (b) training time; (c) validation
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3.4 CNN performance

500 data sets were collected for each health state.

We randomly selected 288 sets for training, and 12
for validation. The rest were used as test data. The
model was iterated 98 times in each round, a total of
1960 times. Fig. 12 shows the network training and
validation process. As the number of iterations
increased, the accuracy of the training and validation
data increased to 100%. The loss function curve was
gradually smooth. The loss function values for the
training and validation data were 0.0250 and 0.0292,

respectively, and their values were close to 0. The
training time was about 211 seconds, and the
validation time was about three seconds. No
over-fitting occurred during the model run.

Fig. 13 shows the confusion matrix of the testing
data. Green represents the label with the correct
prediction. A total of twenty-two samples were
misclassified. The classification accuracy for the
seven states was 100%, 98.5%, 97.5%, 100%, 95.5%,
98.0%, and 100%. The average accuracy was 98.4%.
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Fig. 13 The confusion matrix for test data (Green represents the label with the correct prediction).
3 B A del accuracy rate was above 94%.
-5 Noise immunity of the mode The SNR equation is as follows:
The diesel engine operates in a harsh SNR.. =10lo PSignaI )
environment, so it is essential to study the B 910
- . Noise
adaptability of the proposed model to noise

disturbances. We added noise with signal-to-noise
ratios (SNRs) of -20, 0, 10, and 20 dB to the raw
signals. The training data were from 80 groups, and
the testing data from 60 groups. The experiment was
repeated five times for each SNR. The average
diagnostic accuracy and average loss-function values
are shown in Table 6. In all four cases, the average

where Pgign, is the power of the original signal and
Pnoise 1S the power of added noise.

From the equation, it is evident that the smaller
the SNR, the greater the intensity of the noise in the
signal.

To verify the improvement of the
noise-immunity performance of the CNN model
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effected by the multi-attention mechanism, we fed the
data (SNR=-20 dB) into two network models, one
with a no-attention mechanism (NAM), and one with
a multi-attention mechanism (MAM). All other
parameters were the same for both models. The
experiment was repeated five times. The average
accuracy for different health states is shown in Fig.
14. The fault-diagnosis accuracy of the model with
the attention mechanism was 14.8% higher than that
of the model without it. Thus, the attentional
mechanism appears to improve the noise resistance of
the model.

Table 6 CNN model performance with different SNRs

SNR (dB) Average Average testing  Average loss
training accuracy (%)
accuracy (%)
-20 98.8 94.6 0.0581
0 99.1 96.6 0.0474
10 99.3 98.1 0.0367
20 99.6 98.3 0.0304

T

100.0

90.0

80.0 -

Accuracy (%)

70.0

T

60.0

r7f0 r7f1

3.6 Evaluation of different input methods

To verify the effectiveness of the fused image
method, we input the fused images, GASF images,
and GADF images into the CNN model. The same
model is used for the different input methods.

Fig. 15 shows the accuracy of different input
methods. The comparison shows that the
image-fusion method has the highest fault-diagnosis

Bl NAM
Bl MAM

712 r7f3
Fault types
Fig. 14 Influence of an attention mechanism on CNN performance

Average

accuracy. The overall diagnostic accuracy using
GASF images and GADF images methods is 94.0%
and 84.9%, respectively. The image fusion method
has better signal visualization, and can also provide
more comprehensive feature information for the
model, which is conducive to improving
fault-diagnosis accuracy.
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Fig. 15 Accuracy of different input methods

3.7 Adaptability to variable loads

In practical engineering, collecting data under all
loads is difficult. Therefore, a model trained under a
specific data load ought to be able to perform well
under other loads. Based on the original 75% load
data set, we collected the vibration signals under 25%,
50%, and 100% load . The data from the three loads
were used as training data, and the data from one load
was used as testing data (Peng et al., 2020). In this
way, we were able to improve the generalization
ability of the network model.

The experiment was repeated five times. The
100

average diagnostic accuracy is shown in Fig. 16.
Diagnostic accuracy of more than 89% was achieved
for all the health states. The CNN model is quite
adaptable to variable loads. Image fusion can provide
more comprehensive feature information to the CNN
model.  The multi-attention  mechanism  was
introduced to extract key and potential feature
information in the channel and time dimensions. In
summary, the proposed method can adaptively learn
feature information from data and has a strong
capability for generalization.
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Fig. 16 Model diagnosis results under variable load

3.8 Comparative analysis of the performance of
different methods

Different fault-diagnosis methods and CNN
models were compared to validate the superiority of
the proposed method. We also analyzed vibration
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signals with SNRs of -20 ~ 20 dB for validation. The
contrasted analysis methods included GoogleNet
(Grover et al., 2022), AlexNet (Hajnayeb, 2021),

Modified complete ensemble empirical mode
decomposition with adaptive noise
(MCEEMDAN)-CNN (Hou et al., 2022), and

Continuous wavelet transforms (CWT)-CNN (Fu et
al., 2023). It should be noted that both GoogleNet and
AlexNet needed to be pre-trained. The image sizes
input to GoogleNet and AlexNet were 224>224>3
and 227>227>3, respectively. MCEEMDAN (Hou et

-20dB

100
-7 98

10dB

al., 2022) can realize signal noise reduction, eliminate
modal aliasing, and lay the foundation for subsequent
CNN feature extraction. CWT (Fu et al., 2023) can
efficiently  process non-smooth  signals and
characterize their local features; it helps a CNN to
extract feature information. The above network
models or diagnostic methods have yielded good
results in  machinery fault diagnosis. The
fault-diagnosis accuracy of the four methods and our
proposed method is shown in Fig. 17.

The proposed method
~—&— MCEEMDAN-CNN
% —A— GoogleNet
S CWT-CNN
AlexNet

0dB

Fig. 17 Fault-diagnosis accuracy of different methods

The performance of the different methods
decreased with the SNR. When SNR=-20 dB, the
fault-diagnosis accuracies of GoogleNet,
MCEEMDAN-CNN, AlexNet, and CWT-CNN were
92.2%, 91.6%, 90.3%, and 87.1%, respectively. The
accuracy of the proposed method is 94.6%, which is
higher than that of the other four methods. This
further validates the finding that the proposed method
offers good stability and noise immunity.

4 Discussion

During the experiment, there were certain
limitations and assumptions, primarily:

1. According to the diesel-engine manual,
adjustment of the valve clearance needs to be
carried out when the diesel engine is in a completely
cold state. However, in the actual experiment, due to
the existence of temperature difference, there was a
certain amount of error in adjusting the valve
clearance.

2. In the variable-load experiment, a hydraulic
dynamometer was used to change the load on the
diesel engine. This method was used to simulate the
variable load of power-generation diesel engines in
actual ship navigation. The dynamic response was
slightly different from actual ship conditions.

Although some progress was made in this study,
there are several remaining problems.

1. The proposed method was validated only for
the case of abnormal valve clearance. In practical
engineering, diesel-engine fault states show diversity,
with single and compound faults co-existing.
Whether the proposed method applies to other fault
types and other marine machinery remains to be
verified.

2. Introducing the multi-attention mechanism
increased the network-model computation, and the
network-model training required more time. This puts
higher demands on the computer hardware
configuration.

3. In practical engineering, the problems of
difficult data collection and costly sample labelling



may result in a small amount of training data, or the
amount of data may be large but of insufficient
quality. The proposed method may not be able to
effectively mine equipment health-state feature
information from low-quality data.

Therefore, the focus of subsequent study will be
as follows:

1. Experimental validation should be extended to
include more fault types for fault diagnosis of marine
power-generation diesel engines. In follow-up work,
we will focus on the key component faults and
compound faults of diesel engines to verify the
generalizability of the proposed method. In addition,
it is necessary to further increase the diversity of
samples in the database and explore the validity of
the proposed method for other marine machinery, as
well as its adaptability to harsh environments.

2. The network model should be kept as
lightweight as possible while ensuring that the model
performs well.

3. To support specific equipment and monitoring
of specific physical quantities, relevant data
monitoring, transmission, and storage standards
should be formulated to consolidate the data
foundation for deep-learning-based marine machinery
fault-diagnosis technology. Furthermore, from the
perspective of data augmentation, a diffusion model,
transfer learning, a generative adversarial network,
and other methods could be utilized to address the
problem of designing diagnostic frameworks for
network models in the case of small samples.

All in all, deep-learning-based intelligent
fault-diagnosis methods for ships still have a long
way to go in order to move from the lab to real ship
applications.

5 Conclusions

In this work, we designed and tested a
valve-clearance fault-diagnosis model based on the
GAF and a CNN. The conclusions are as follows:

1. Using a multi-attention  mechanism,
interference information such as noise can be
suppressed, and the CNN feature-extraction
capability can be optimized. With strong noise, the
diagnostic accuracy of the model with a
multi-attention mechanism is 14.8% better than the
model without the mechanism.

2. The average accuracy is above 94% with all
SNRs. The proposed method has better noise
immunity and stability than the four other methods.
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3. Fused images provide more adequate feature
information for the neural network, which improves
fault-identification accuracy.

4. The variable-load experiments illustrate that
the accuracy of the proposed model can be
maintained above 89%, proving that it has good
stability.
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