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Abstract: Marine power-generation diesel engines operate in harsh environments. Their vibration signals are highly complex and 

the feature information exhibits a non-linear distribution. It is difficult to extract effective feature information from the network 

model, resulting in low fault-diagnosis accuracy. To address this problem, we propose a fault-diagnosis method that combines the 

Gramian angular field (GAF) with a convolutional neural network (CNN). Firstly, the vibration signals are transformed into 2-D 

images by taking advantage of the GAF, which preserves temporal correlation. The raw signals can be mapped to 2-D image 

features such as texture and color. To integrate feature information, the images of the Gramian angular summation field (GASF) 

and Gramian angular difference field (GADF) are fused by the weighted-average fusion method. Secondly, the channel attention 

mechanism and temporal attention mechanism are introduced in the CNN model to optimize the CNN learning mechanism. 

Introducing the concept of residuals in the attention mechanism improves the feasibility of optimization. Finally, the 

weighted-average fused images are fed into the CNN for feature extraction and fault diagnosis. The validity of the proposed method 

is verified by experiments with abnormal valve clearance. The average diagnostic accuracy is 98.4%. When -20 < SNR 

(Signal-to-noise ratio) < 20 dB, the diagnostic accuracy of the proposed method is higher than 94.0%. The proposed method has 

superior diagnostic performance. Moreover, it has a certain anti-noise capability and variable-load adaptive capability. 

Key words: Multiple attention mechanisms; Convolutional neural network; Gramian angular field; Fusion image; Marine 

power-generation diesel engine; Fault diagnosis 

1  Introduction 

The power-generation diesel engine is an 

essential piece of equipment for ships. In addition to 

providing electricity, it is widely used for electric 

propulsion. Recently, there has been a lot of interest in 

fault diagnosis of key diesel engine components (Cai 

et al., 2020; Çağlar and Yasin, 2022; Rao et al., 2022). 

The air-distribution mechanism operates in a harsh 

environment, especially the valves and seats. They are 

directly connected to the combustion chamber and 

often exposed to high temperatures and pressures. The 

valve train is one of the main moving parts. It directly 

affects the power and combustion economy of the 

diesel engine. The opening and closing of the air 

valves cause periodic shocks to the valve seats. In 

addition, particulate matter from combustion 

accelerates the wear and corrosion of valves and valve 

seats. Therefore, troubleshooting the valve mechanism 

is essential. 

Traditional intelligent fault-diagnosis methods 

require human extraction of feature information, such 

as time-domain information, frequency-domain 

information, or time-frequency-domain information 

(Nayana and Geethanjali, 2017; Dhamande and 

Chaudhari, 2017; Sun et al., 2022). This feature 

information is fed into a classifier for fault 

classification. Machine-learning methods commonly 

used include support vector machines (Song et al., 

2023) and random forests (Mariela et al., 2016). In 

practical engineering, feature selection and extraction 

depend on professional knowledge. Manually 

extracted fault features do not fully reflect the features 

of mechanical vibration signals (Peng et al., 2020). 

Data that can reflect the health status of diesel engines 

are characterized by their large volume, diversity, and 

low-value density (Qian et al., 2022; Hoang and Kang, 

2018). This makes it challenging for traditional 

intelligent methods to meet the needs of fault 

diagnosis using big data. With the rapid development 

of artificial intelligence, deep learning is gaining 
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popularity in fault diagnosis (Zhao et al., 2019). Deep 

learning offers the capacity to learn complex 

non-linear relationships (Schmidhuber, 2015) and 

overcomes the disadvantages of shallow learning. The 

gearbox faults are successfully classified using data 

fusion and multiple classifiers (Senanayaka et al., 

2019). Continuous wavelet transforms (CWT) (Du et 

al., 2022) are used to transform signals into 2-D 

images (Fu et al., 2023). They are input into a CNN to 

obtain fault diagnosis. However, CWT requires 

manual selection of the basis function, and its 

accuracy will vary depending on the choice of the 

basis function (Guo et al., 2020; Manarikkal et al., 

2021). Alsalaet et al. (2023) used normalized feature 

maps as the input to a CNN to achieve bearing fault 

diagnosis. Hu et al. (2023) input acoustic emission 

signals into a CNN model to perform fault diagnosis of 

exhaust-valve leakage. He et al. (2022) designed a 

signal fusion model based on transfer learning to 

realize fault diagnosis of an axial piston pump. 

Inspired by the idea of multi-scale feature extraction, 

Xie et al. (2023) designed a multi-scale convolutional 

layer and incorporated a hybrid attention mechanism 

to achieve fault diagnosis of rolling bearings. 

Meanwhile, Xu et al. (2022) used a combination of a 

multi-scale CNN, feature-enhancement module, and a 

joint attention mechanism to perform fault diagnosis 

on rotating machinery. 

The aforementioned scholars have conducted 

outstanding research on CNN-based fault diagnosis. 

However, diesel-engine vibration signals present 

non-linear characteristics and contain a large amount 

of background noise. Often only part of the data in the 

overall signal (e.g., continuous-pulse signal segments) 

contains key information, and data not related to faults 

can interfere with the learning of the network model. 

This has led to many CNN models that improve 

diagnostic accuracy through complex structures (Wen 

et al., 2019; Pan et al., 2021). Not only does this lead to 

problems such as high model computation and 

performance degradation, it also limits the model’s 

ability to generalize when working conditions change. 

Accurate and efficient air-valve fault diagnosis can 

effectively improve combustion economy and ensure 

normal power output of diesel engines. Inspired by 

previous studies, in this paper we propose a new 

valve-clearance fault-diagnosis method. The main 

contribution points are as follows: 

1. The vibration signals are transformed into 2-D 

images with temporal correlation by the GAF. In this 

way, 2-D images can maintain absolute correlation 

with time and provide different levels of information 

granularity. 

2. The weighted average fusion algorithm is 

used to fuse 2-D images. This further portrays the 

invisible information in the signals and maximizes 

use of the signals' feature information. 

3. A multi-attention mechanism is embedded 

into the CNN model to improve its ability to capture 

critical information and adaptively enhance the 

fault-feature response. 

 

 

2  Background theory 

2.1  The Gramian angular field (GAF) 

The GAF (Cui et al., 2022) uses the idea of 

coordinate transformation to convert signals into 2-D 

images. Given a time series   *          +, its 

transformation process is as follows: 

(1) Normalise the series to the interval [-1,1]. 

The calculation formula is: 
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where    is a time stamp and   is a constant. 

(3) Two images can be obtained. Eq. (3) is the 

formula for the GASF. Eq. (4) is the 

formula for the GADF. 
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where     ,        -. 

If the times series is too long, a 

high-dimensional matrix is generated. This increases 

the amount of computation. Therefore, piecewise 
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aggregate approximation (PAA) (Ren et al., 2018) is 

used. After dividing the series into equal length 

sub-series and averaging them to represent the raw 

series, the raw series information can be retained and 

the sequence length is reduced. Fig. 1 shows the 

process of transforming the signal into a 2-D image 

with the GAF. 

 
Fig. 1 GAF conversion process 

 

2.2  Image fusion 

Frequency information was extracted in the 

GASF and GADF 2D matrices and represented by 

density histograms (see Fig. 2). GASF and GADF 

had different distributions. To make the best use of 

feature information, the two images were fused using 

the weighted average fusion method (Ren et al., 

2022). The weighted average fusion is calculated as 

follows: 
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where   (   ) and   (   ) are images to be fused. 

  (   ) and   (   ) are the weights when adding 

the corresponding pixel values of images   (   ) 

and   (   ), respectively.       ,   -,       

     (   ) and   (   ) indicate overlapping area 

boundaries.   (   )    (   )   . 

Fig. 3 shows the fusion process for the two 

images, which complements and integrates the 

feature information. This method provided sufficient 

feature information for the network model.

 
Fig. 2 The density histogram of GASF and GADF: (a) GASF matrix density histogram; (b) GADF matrix density histogram 
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Fig. 3 Image-fusion process 

 

2.3  Multi-attention mechanism 

In CNN training, a large amount of channel 

information is generated. This feature information has 

unequal value, which affects the CNN training 

process and classification accuracy. Therefore, we 

introduced the channel attention mechanism model 

(Wang et al., 2020) and improved it for the purposes 

of this study. The features were first subjected to 

maximum and average pooling. The global 

information was compressed into the channel 

dimension to establish the information relationship 

between channels. After pooling, the feature 

information was fed into the squeezed-excitation 

network. The information for each channel was 

compressed into a weight that represented the global 

information response of the channel. By adjusting the 

dimensionality reduction factor (r), we were able to 

discard unimportant feature information. 

The input matrix is         ,   is the 

number of channels, and   is the length.   

 
 

 ⁄      is the intermediate vector. The output of 

the squeezed-excitation network can be summed to 

obtain the vector          . The output is: 

 

( ) C X c                (7) 

 

The concept of residual was introduced in 

channel attention mechanism. By this method, the 

original information is retained to improve the 

feasibility of optimizing the network. Connected by 

residuals, the output is       . Fig. 4 shows the 

channel attention mechanism. 

 
Fig. 4 Channel attention mechanism 

 

The temporal attention mechanism (Tian et al., 

2022) determines the signal segment of the fault 

feature information. The premise is to retain the 

original distribution of feature information in the 

temporal dimension. Pooling operations inevitably 

result in the loss of some feature information. 

Therefore, we introduced the 1×1×1 convolution 

operation to obtain the weights of the feature 

information in the time dimension. Feature 

information can be mapped non-linearly to higher 

dimensions. The weight vector obtained was 

        , which had been processed by the 

channel attention mechanism. 

Both attention mechanisms used the sigmoid 

function to generate modulation weights. These were 

multiplied by the original signal to obtain: 
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where    is the input matrix,     
   and   

    are the 

weight and deviation generated by the convolution 

operation. 

The residual idea was similarly introduced in 
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temporal attention mechanism.        . Fig. 5 

shows the temporal attention mechanism. 

In designing the model, the channel attention 

mechanism and time attention mechanism were 

successively arranged to extract the features of key 

channels and key signal segments, respectively.

 
Fig. 5. Temporal attention mechanism 

 

3  Experimentation and analysis 

3.1  Experimental setup 

  The experimental equipment was a 4135AC 

marine power-generation diesel engine. Table 1 

shows the main parameters and the diesel engine 

phase diagram is shown in Fig. 6. The vibration 

acceleration sensor model was INV9822, a 

general-purpose piezoelectric acceleration sensor. 

Due to the magnetic seat, the acceleration sensor and 

the diesel cylinder head could be magnetically 

attached. The sensitivity of the vibration was 100 

mV/g and the sampling time and sampling frequency 

were 10 seconds and 20.48 kHz, respectively. The 

sampling interval was 30 seconds. The data-collector 

model was INV3062. The vibration sensors were 

mounted between the intake and exhaust valves of the 

diesel engine, which minimized interference from 

adjacent cylinders. The opening and closing moments 

of the intake and exhaust valves were different for 

different cylinders. We used a sensor (type SZB-16L) 

to collect the top dead center (TDC) signal. Based on 

the TDC signal and the phase diagram of the diesel 

engine, we were able to determine the opening and 

closing times of the intake and exhaust valves for 

each cylinder. The sensor arrangement and valve 

clearance are shown in Fig. 7. During the experiment, 

vibration signals were collected for each cylinder. In 

the data-processing and fault-diagnosis process, we 

used the vibration signal of the 1
st
 cylinder as an 

example for analysis. Because the screw was hollow, 

its main function was to hold the cylinder-head cover 

in place. Passing the sensor through it did not damage 

or interfere with the structure of the engine. The 

fault-simulation experimental scheme is shown in 

Table 2; the vibration signals of the normal and 

abnormal valve clearance of the diesel engine were 

acquired at rated speeds of 1500 r/min and 75% load, 

respectively. 

 
Table 1 The main parameters of the diesel engine 

Machine number A0422497 

Cylinder diameter 135 mm 

Intake-valve clearance 0.25 mm 

Exhaust-valve clearance 0.30 mm 

Stroke 150 mm 

Continuous power 66.2 kW 

 
Table 2 The fault-simulation experimental scheme 

Label Fault type Valve clearance (mm) 

R1 Normal 0.25 (intake), 0.30 (exhaust) 

R2  

Abnormal 

intake-valve 

clearance 

0.15 

R3 0.35 

R4 0.65 

R5  

Abnormal 

exhaust-valve 

clearance 

0.20 

R6 0.45 

R7 0.70 
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Fig. 6 Phase diagram of diesel engine 

 

 
Fig. 7 Arrangement of sensors and valve clearance: (a) vibration sensors; (b) TDC sensor; (c) valve clearance 

 

3.2  Signal analysis 

After collecting the vibration signals for the 

different health states, we used the normal state and 

abnormal exhaust-valve clearance as examples. 

Referring to the diesel engine phase diagram and the 

TDC signal, the time-domain diagram of an operating 

cycle for the 1
st
 cylinder is shown in Fig. 8. Both 

combustion and valve opening and closing moments 

transmit significant shock signals to the cylinder head. 

The change in valve clearance affects the opening and 

closing time, motion speed, and acceleration of the 
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valve. This in turn affects the impact and energy of 

the valve when it is seated. Fig. 8a-8b shows that the 

time-domain waveform when the exhaust-valve 

clearance was slightly abnormal was not much 

different from the normal waveform. There was no 

significant change in the shock of the exhaust valve 

to the valve seat. According to the information shown 

in Fig. 8c, when the exhaust-valve clearance was 

seriously abnormal, the valves opened late and closed 

early. The amplitude was up to 431 m/s², two to three 

times higher than normal. This reflected the dramatic 

rise in signal shock and energy. The valve clearance 

may be slightly abnormal in practical engineering. It 

is difficult to determine whether abnormal valve 

clearances have occurred through the time-domain 

waveform. Hence, further processing of the vibration 

signals was necessary. 

 
Fig. 8 Time-domain diagram of normal condition and abnormal exhaust-valve clearance: (a) R1; (b) R6; (c) R7 

 

To link computer vision and fault diagnosis, we 

transformed the original signals into 2-D images. Fig. 

9 shows the results of 2-D image conversion for the 

four health states. When the valve clearance was 

abnormal, the texture, and color features of the 2-D 

image were more complex. This was due to the 

increased excitation force and excitation energy on 

the valve seat. When the amplitude was small, the 

crossover feature with lighter color appeared in the 

feature map. The vertical and horizontal highlighting 

bands indicate rapid changes in amplitude. The shock 

from the opening and closing of the valve was well 

retained. Figs. 9 panels a, f, and g indicate normal, 

slightly abnormal, and severely abnormal 

exhaust-valve clearance,  respectively. The vibration 

signals are converted into 2-D images, the vibration 

shock of slightly abnormal exhaust-valve clearance 

can also be indicated. This overcomes the defect of 
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the time-domain signals not being very 

distinguishable. With the GAF method, the time 

series is uniquely mapped in the coordinate 

transformation and the integrity of the signal is 

preserved. The fused images of different health states 

had marked differences in texture, color, and other 

features. This provided the basis for the CNN to 

extract feature information and perform fault 

diagnosis. 

 
Fig. 9 Two-dimensional images of the four health states: (a) R1; (b) R2; (c) R3; (d) R4; (e) R5; (f) R6; (g) R7 

 

3.3  CNN structure and parameter selection 

The deep learning setup included an AMD 

Ryzen 7 5800H CPU@3.2GHz, NVIDIA GeForce 

RTX 3060 Laptop GPU, and the win11 operating 

system. In a squeeze-incentive network with a 

channel-attention mechanism, the value of the 

dimensionality reduction factor (r) needs to be 

discussed. The r selectable values were 4, 8, 16, 32, 

and 64. The results of different r values are shown in 

Table 3. When r changed from 4 to 64, the training 

time dropped by 125 seconds and diagnostic accuracy 

decreased by 2.78%. Therefore the value of r had 

little effect on model performance. We set the value 

of r to 4. 

 

Table 3 Comparison of results for different dimensionality-reduction coefficients 

r Training time (s) Number of model parameters 

(×105) 

Accuracy (%) 

4 351 0.94 66.35 

8 327 0.71 64.51 

16 268 0.59 64.26 

32 243 0.53 64.18 

64 226 0.51 63.57 

Hyperparameters can affect CNN performance, 

so one should set the learning rate, MaxEpoch, and 

other parameters in advance. We will use the learning 

rate and MaxEpoch as examples to show the 

hyperparameter setting process. The optional range of 

the learning rate was 0.0001, 0.001, 0.01. The 

performance of the CNN is shown in Fig. 10. When 

the range was 0.001, the CNN had the highest 

accuracy and shortest running time, so we chose this 

value. The optional value of MaxEpoch is 20, 30, 40, 

50, 80. The results of the experiment are shown in 

Fig. 11. When MaxEpoch = 20, the network model 

required less time and had high diagnostic accuracy. 

Therefore, we chose this value for the experiment. 
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The other parameters were set with a similar 

process. Table 4 shows the hyperparameters. The 

CNN model had 17 layers and its structure is shown 

in Table 5. 
 

Table 4 Optimal values for the main hyperparameter 

settings 

L2Regularization 0.004 

LearnRateDropFactor 0.05 

LearnRateDropPeriod 10 

InitialLearnRate 0.001 

Slover Adam 

MaxEpochs 20 

MiniBatchSize 10 

 

Table 5 The CNN structure and main parameters 

Name Structure parameters Output size 

Image input 64×64×3 64×64×3 

Conv_1 32@2×2, Stride= [1], 

Padding= [2] 

67×67×32 

Batchnorm_1 - 67×67×32 

Maxpool_1 3×3, Stride= [2], padding= 

[0] 

33×33×32 

Multi-attention 

mechanism_1 

64@1×1×1 (Time attention 

mechanism) 

33×33×32 

Relu_1 ReLu 33×33×32 

Conv_2 32@3×3, Stride= [1], 

Padding= [2] 

35×35×32 

Batchnorm_2 - 35×35×32 

Maxpool_2 3×3, Stride= [2], Padding= 

[0] 

17×17×32 

Multi-attention 

mechanism_2 

128@1×1×1 (Time attention 

mechanism) 

17×17×32 

Relu_2 ReLu 17×17×32 

Fc_1 - 1×1×100 

Relu_3 ReLu 1×1×100 

Dropout 0.5 1×1×100 

Fc_2 - 1×1×7 

Softmax - 1×1×7 

Class output - 1×1×7 Une
dit
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Fig. 10 Experimental results of different learning rates: (a) training accuracy; (b) training time; (c) validation accuracy; (d) 

validation time 

 

 

Fig. 11 Experimental results with different MaxEpoch values: (a) training accuracy; (b) training time; (c) validation 

accuracy; (d) validation time 

 

3.4  CNN performance 

500 data sets were collected for each health state. 

We randomly selected 288 sets for training, and 12 

for validation. The rest were used as test data. The 

model was iterated 98 times in each round, a total of 

1960 times. Fig. 12 shows the network training and 

validation process. As the number of iterations 

increased, the accuracy of the training and validation 

data increased to 100%. The loss function curve was 

gradually smooth. The loss function values for the 

training and validation data were 0.0250 and 0.0292, 

respectively, and their values were close to 0. The 

training time was about 211 seconds, and the 

validation time was about three seconds. No 

over-fitting occurred during the model run. 

Fig. 13 shows the confusion matrix of the testing 

data. Green represents the label with the correct 

prediction. A total of twenty-two samples were 

misclassified. The classification accuracy for the 

seven states was 100%, 98.5%, 97.5%, 100%, 95.5%, 

98.0%, and 100%. The average accuracy was 98.4%. 
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Fig. 12 The CNN model training and validation process 

 

 
Fig. 13 The confusion matrix for test data (Green represents the label with the correct prediction). 

 

3.5  Noise immunity of the model 

The diesel engine operates in a harsh 

environment, so it is essential to study the 

adaptability of the proposed model to noise 

disturbances. We added noise with signal-to-noise 

ratios (SNRs) of -20, 0, 10, and 20 dB to the raw 

signals. The training data were from 80 groups, and 

the testing data from 60 groups. The experiment was 

repeated five times for each SNR. The average 

diagnostic accuracy and average loss-function values 

are shown in Table 6. In all four cases, the average 

accuracy rate was above 94%. 

The SNR equation is as follows: 

Signal

dB 10

Noise

SNR 10log
P

P
             (9) 

where         is the power of the original signal and 

       is the power of added noise. 

From the equation, it is evident that the smaller 

the SNR, the greater the intensity of the noise in the 

signal. 

To verify the improvement of the 

noise-immunity performance of the CNN model 
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effected by the multi-attention mechanism, we fed the 

data (SNR=-20 dB) into two network models, one 

with a no-attention mechanism (NAM), and one with 

a multi-attention mechanism (MAM). All other 

parameters were the same for both models. The 

experiment was repeated five times. The average 

accuracy for different health states is shown in Fig. 

14. The fault-diagnosis accuracy of the model with 

the attention mechanism was 14.8% higher than that 

of the model without it. Thus, the attentional 

mechanism appears to improve the noise resistance of 

the model. 

 

Table 6 CNN model performance with different SNRs 

SNR (dB) Average 

training 

accuracy (%) 

Average testing 

accuracy (%) 

Average loss 

-20 98.8 94.6 0.0581 

0 99.1 96.6 0.0474 

10 99.3 98.1 0.0367 

20 99.6 98.3 0.0304 

 

 
Fig. 14 Influence of an attention mechanism on CNN performance 

 

3.6  Evaluation of different input methods 

To verify the effectiveness of the fused image 

method, we input the fused images, GASF images, 

and GADF images into the CNN model. The same 

model is used for the different input methods.  

Fig. 15 shows the accuracy of different input 

methods. The comparison shows that the 

image-fusion method has the highest fault-diagnosis 

accuracy. The overall diagnostic accuracy using 

GASF images and GADF images methods is 94.0% 

and 84.9%, respectively. The image fusion method 

has better signal visualization, and can also provide 

more comprehensive feature information for the 

model, which is conducive to improving 

fault-diagnosis accuracy. 
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       Fig. 15 Accuracy of different input methods 

 

3.7  Adaptability to variable loads 

In practical engineering, collecting data under all 

loads is difficult. Therefore, a model trained under a 

specific data load ought to be able to perform well 

under other loads. Based on the original 75% load 

data set, we collected the vibration signals under 25%, 

50%, and 100% load . The data from the three loads 

were used as training data, and the data from one load 

was used as testing data (Peng et al., 2020). In this 

way, we were able to improve the generalization 

ability of the network model. 

The experiment was repeated five times. The 

average diagnostic accuracy is shown in Fig. 16. 

Diagnostic accuracy of more than 89% was achieved 

for all the health states. The CNN model is quite 

adaptable to variable loads. Image fusion can provide 

more comprehensive feature information to the CNN 

model. The multi-attention mechanism was 

introduced to extract key and potential feature 

information in the channel and time dimensions. In 

summary, the proposed method can adaptively learn 

feature information from data and has a strong 

capability for generalization.

 
Fig. 16 Model diagnosis results under variable load 

 

3.8  Comparative analysis of the performance of 

different methods 

Different fault-diagnosis methods and CNN 

models were compared to validate the superiority of 

the proposed method. We also analyzed vibration 
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signals with SNRs of -20 ~ 20 dB for validation. The 

contrasted analysis methods included GoogleNet 

(Grover et al., 2022), AlexNet (Hajnayeb, 2021), 

Modified complete ensemble empirical mode 

decomposition with adaptive noise 

(MCEEMDAN)-CNN (Hou et al., 2022), and 

Continuous wavelet transforms (CWT)-CNN (Fu et 

al., 2023). It should be noted that both GoogleNet and 

AlexNet needed to be pre-trained. The image sizes 

input to GoogleNet and AlexNet were 224×224×3 

and 227×227×3, respectively. MCEEMDAN (Hou et 

al., 2022) can realize signal noise reduction, eliminate 

modal aliasing, and lay the foundation for subsequent 

CNN feature extraction. CWT (Fu et al., 2023) can 

efficiently process non-smooth signals and 

characterize their local features; it helps a CNN to 

extract feature information. The above network 

models or diagnostic methods have yielded good 

results in machinery fault diagnosis. The 

fault-diagnosis accuracy of the four methods and our 

proposed method is shown in Fig. 17. 

 
Fig. 17 Fault-diagnosis accuracy of different methods 

 

The performance of the different methods 

decreased with the SNR. When SNR=-20 dB, the 

fault-diagnosis accuracies of GoogleNet, 

MCEEMDAN-CNN, AlexNet, and CWT-CNN were 

92.2%, 91.6%, 90.3%, and 87.1%, respectively. The 

accuracy of the proposed method is 94.6%, which is 

higher than that of the other four methods. This 

further validates the finding that the proposed method 

offers good stability and noise immunity. 

 

 

4  Discussion 

 

During the experiment, there were certain 

limitations and assumptions, primarily:  

1. According to the diesel-engine manual, 

adjustment of the  valve clearance needs to be 

carried out when the diesel engine is in a completely 

cold state. However, in the actual experiment, due to 

the existence of temperature difference, there was a 

certain amount of error in adjusting the valve 

clearance. 

2. In the variable-load experiment, a hydraulic 

dynamometer was used to change the load on the 

diesel engine. This method was used to simulate the 

variable load of power-generation diesel engines in 

actual ship navigation. The dynamic response was 

slightly different from actual ship conditions. 

Although some progress was made in this study, 

there are several remaining problems. 

1. The proposed method was validated only for 

the case of abnormal valve clearance. In practical 

engineering, diesel-engine fault states show diversity, 

with single and compound faults co-existing. 

Whether the proposed method applies to other fault 

types and other marine machinery remains to be 

verified. 

2. Introducing the multi-attention mechanism 

increased the network-model computation, and the 

network-model training required more time. This puts 

higher demands on the computer hardware 

configuration. 

3. In practical engineering, the problems of 

difficult data collection and costly sample labelling 
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may result in a small amount of training data, or the 

amount of data may be large but of insufficient 

quality. The proposed method may not be able to 

effectively mine equipment health-state feature 

information from low-quality data. 

Therefore, the focus of subsequent study will be 

as follows: 

1. Experimental validation should be extended to 

include more fault types for fault diagnosis of marine 

power-generation diesel engines. In follow-up work, 

we will focus on the key component faults and 

compound faults of diesel engines to verify the 

generalizability of the proposed method. In addition, 

it is necessary to further increase the diversity of 

samples in the database and explore the validity of 

the proposed method for other marine machinery, as 

well as its adaptability to harsh environments. 

2. The network model should be kept as 

lightweight as possible while ensuring that the model 

performs well. 

3. To support specific equipment and monitoring 

of specific physical quantities, relevant data 

monitoring, transmission, and storage standards 

should be formulated to consolidate the data 

foundation for deep-learning-based marine machinery 

fault-diagnosis technology. Furthermore, from the 

perspective of data augmentation, a diffusion model, 

transfer learning, a generative adversarial network, 

and other methods could be utilized to address the 

problem of designing diagnostic frameworks for 

network models in the case of small samples. 

All in all, deep-learning-based intelligent 

fault-diagnosis methods for ships still have a long 

way to go in order to move from the lab to real ship 

applications. 

 

 

5  Conclusions 

 

In this work, we designed and tested a 

valve-clearance fault-diagnosis model based on the 

GAF and a CNN. The conclusions are as follows: 

1. Using a multi-attention mechanism, 

interference information such as noise can be 

suppressed, and the CNN feature-extraction 

capability can be optimized. With strong noise, the 

diagnostic accuracy of the model with a 

multi-attention mechanism is 14.8% better than the 

model without the mechanism. 

2. The average accuracy is above 94% with all 

SNRs. The proposed method has better noise 

immunity and stability than the four other methods. 

3. Fused images provide more adequate feature 

information for the neural network, which improves 

fault-identification accuracy. 

4. The variable-load experiments illustrate that 

the accuracy of the proposed model can be 

maintained above 89%, proving that it has good 

stability. 
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中文概要 

 
题 目：基于格拉姆角场和卷积神经网络的船用发电柴

油机故障诊断 

 

作 者：李从跃
1
，胡以怀

1
，蒋佳炜

2
，崔德馨

1
 

机 构：  
1
上海海事大学，商船学院，中国上海，201306；
2
上海电子信息职业技术学院，机械与能源工

程学院，中国上海，201411 

 

目 的：船用发电柴油机工作环境恶劣，在内外多激励

源的干扰下，振动信号呈现非线性非平稳性特点。本文旨

在如何对船舶发电柴油机的振动信号进行有效特征提取并

准确识别故障类型。研究所提方法的有效性，以提高船舶

发电柴油机的故障诊断精度。 

创新点：1. 一维振动信号可通过格拉姆角场转换为二维图

像。一维振动信号可以映射到 2D 图像的颜色、点、线和其

他特征。为充分利用故障特征信息，将格拉姆角和场和格

拉姆角差场获得的图像进行加权平均融合。2. 利用多注意

力机制来优化卷积神经网络学习机制，使网络有选择地提

取信号中的关键特征信息。 

方 法：1. 对船舶发电柴油机的气阀间隙进行故障预设，

采集柴油机不同健康状态振动信号。2. 将振动信号转化为

二维图像，将格拉姆角和场和格拉姆角差场获得的图像进

行加权平均融合，充分利用原信号中的故障特征信息。 3. 

将融合后的图像输入到卷积神经网络中，进行自适应特征

提取和故障识别。 

结 论：1. 所提方法可准确识别故障类型，诊断精度可

达 98.4%，与其他方法相比，所提方法具有更高的故障诊

断精度。2. 在不同信噪比下，所提方法与无注意力机制方

法相比，准确精度可提高 14.8%。3. 融合后的图像可为神

经网络提供更充足的特征信息，可提高故障识别精度。4. 变

负荷实验中，所提方法的准确率均保持在 89%以上，这进

一步验证了所提方法的稳定性。 

关键词：多注意力机制；卷积神经网路；格拉姆角场；图

像融合；船舶发电柴油机；故障诊断 
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