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Abstract: Time synchronous averaging (TSA) is based on the idea of denoising by averaging, and it extracts the periodic com-

ponents of a quasiperiodic signal and keeps the extracted waveform undistorted. This paper studies the mathematical properties 

of TSA, where three propositions are given to reveal the nature of TSA. This paper also proposes a TSA-spectrum based on 

super-resolution analysis and it decompose a signal without using any base function. In contrast to discrete Fourier transform 

spectrum (DFT-spectrum), which is a spectrum in frequency domain, TSA-spectrum is a period-based spectrum, which can pre-

sent more details of the cross effects between different periodic components of a quasiperiodic signal. Finally, a case study is 

carried out using bearing fault analysis to illustrate the performance of TSA-spectrum, where the rotation speed fluctuation of 

the shaft is estimated, which is about 0.12 milliseconds difference. The extracted fault signals are presented and some insights 

are provided. We believe that this paper can provide new motivation for TSA-spectrum to be widely used in applications in-

volving quasiperiodic signal processing (QSP). 
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1  Introduction 

 

This paper presents an innovative approach in 

the field of quasiperiodic signal processing (QSP) by 

introducing the Time Synchronous Averaging Spec-

trum (TSA-spectrum) based on Super-Resolution 

Analysis. QSP is essential in various applications, 

from medical science to engineering, where the ex-

traction of periodic components from signals is cru-

cial. While Fourier Transform (FT) has traditionally 

been used to transform signals from time to fre-

quency domains, we explore the concept of period as 

an independent parameter in the analysis of qua-

siperiodic signals. We provide an overview of the 

significance of QSP, the limitations of traditional 

frequency-based methods, and the unique character-

istics of period-based analysis. In the subsequent 

section, we delve into the background of our re-

search to offer a comprehensive understanding of the 

context and motivation behind the proposed 

TSA-spectrum. 

1.1 Background 

Using Fourier transform (FT), we can transform 

a signal from a time domain into a frequency domain. 

As is known, a period is the reciprocal of a frequen-

cy. A spectrum in a frequency domain naturally cor-

responds to a spectrum in a period domain. More 

specifically, both the terms ‘period’ and ‘frequency’ 

mentioned herein are parameters of a sine or cosine 

function. However, intrinsically, the concept of ‘pe-

riod’ should be independent from the existence of a 

https://doi.org/10.1631/jzus.A2300251 

Research Article 

 

 Wei FENG, wei.feng@siat.ac.cn 

 Wei FENG, https://orcid.org/0000-0002-9845-999X 

 

Received May 9, 2023; Revision accepted Dec. 5, 2023;  

Crosschecked  

 

© Zhejiang University Press 2024 

un
ed

ite
d

mailto:wei.feng@siat.ac.cn


|  J Zhejiang Univ-Sci A (Appl Phys & Eng)   in press 2 

sine or cosine function. When we try to liberate ‘pe-

riod’ from FT, the liberated period is not the recip-

rocal of the frequency of any base functions, such as 

sine, cosine, and wavelet functions. Without a spe-

cific base function, the period is a more general con-

cept describing a periodic signal.  

Mathematically, a signal      is a periodic 

signal if there exists a      satisfying 

            for all    . The parameter   

denotes the period of     .  

In the real world, it is rare to observe a perfect 

periodic signal. Commonly, what we can observe is a 

signal containing one or more periodic components. 

We name a nonperiodic signal with hidden periodic 

components as a quasiperiodic signal, which can be 

described as 

 ̂              
where,      is the periodic component and 

     is a nonperiodic term.  

In real applications, either      or      may 

contain the information of interest. Quasiperiodic 

signal processing (QSP) refers to signal processing 

techniques able to identify or extract the information 

we want, while at the same time eliminating or sup-

pressing other information. The exact purpose of 

QSP depends on the needs of the actual application.  

Quasiperiodic signal processing covers a wide 

range of application scenarios, from medical science 

and climate analysis to general usage in engineering. 

For medical science, QSP can be applied to electro-

cardiography (ECG) to monitor heart conditions (Lin 

and Hu, 2008; Birrenkott et al., 2018; Martens et al., 

2018; Musuamba et al., 2021;Wang et al., 2023), and 

QSP techniques can be used with electroencephalo-

grams (EEG) to reveal the activity of the human 

brain (Thakor and Tong, 2004; Chaumon and Bishop, 

2015; Mannan et al., 2018; Mpekris et al., 2020; 

Nagwanshi et al., 2023.). For applications in engi-

neering, we can apply QSP to analyze the vibration 

signals of rotating machinery, such as bearings 

(Randall and Antoni, 2011; Wang et al., 2014; Smith 

and Randall, 2015; Yao et al., 2022) and gears 

(Wang et al., 2018; Sun at al., 2018; Touret et al., 

2018; Tan et al., 2021), for fault diagnosis and early 

warning. This can be of crucial importance for the 

operational safety of high-speed trains (Hong et al., 

2014; Chen et al., 2019; Peng et al., 2019; Gabrić et 

al., 2021), wind turbines (Qiao and Lu, 2015; Sala-

meh et al., 2018; Wang et al., 2019), and engines 

(Wang et al., 2013; Delvecchio et al., 2018; Ma et al., 

2019; Ross, 2023). 

Currently, there are many signal processing 

techniques pertaining to QSP methods, such as FT 

(Gothwal et al., 2011; Talhaoui et al., 2014; Lee et 

al., 2014; Sugavanam et al., 2019; Ma & Tao, 2021; 

Thibault et al., 2023), wavelet transforms (Chen et 

al., 2016; Wang et al., 2018; Gupta et al., 2019; 

Tianet al., 2023), and many other filtering methods 

(Roth et al., 2017; Li et al., 2018; Zhang et al., 2019; 

Bommert et al., 2020). Almost all these techniques 

share a common point that relates to a spectral de-

scription in the frequency domain. In this paper, we 

call a signal processing technique a frequency-based 

method if it analyzes a signal in a frequency domain 

based on a base function, such as a sine, cosine, or 

wavelet function. In contrast, we name a technique a 

period-based method if it analyzes a signal in the 

period domain. It should be noted that time syn-

chronous averaging (TSA) (McFadden, 1987) can be 

taken as a typical period-based method for signal 

processing. TSA is not new, but it is classic and ef-

fective. Hereafter, this paper is mainly focused on 

TSA and we introduce the TSA-spectrum based on 

Super-Resolution Analysis from the aspect of the 

period spectrum. A brief review of TSA is presented 

in Section 1.2. 

1.2 Brief review of time synchronous averaging 

(TSA) 

TSA is a technique with a long history and there 

is much related literature. It is based on the idea of 

denoising by averaging and it does not rely on any 

base function. It is widely used in condition evalua-

tion of rotating equipment, such as bearings (Mishra 

et al., 2016; Yao et al., 2022) and gearboxes 

(Combet and Gelman, 2007; Halim et al., 2008; 

Ahamed et al., 2014; Bravo-Imaz et al., 2017; Came-

rini et al., 2019; Zhang and Hu, 2019; Tan et al., 

2021). TSA can extract periodic components from a 

signal and keep the extracted waveform undistorted. 

The performance of TSA in processing signals, such 

as vibration and noise, of a device with rotating 

structures has been well studied.  

TSA is ergodic and its denoise property can be 

described as follows. Non-synchronous noise is re-

duced by the reciprocal of the square root of the 
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number of revolutions (McFadden, 1987). The only 

parameter of TSA is the length of the synchronous 

signal which, in most publications dealing with 

bearings or gearboxes, is related to the revolution of 

the rotating shaft. Usually, a tachometer, or speed 

sensor, is necessary to provide a reference value of 

the length of the synchronous signal (McFadden and 

Toozhy, 2000; Mishra et al., 2016; Schmidt et al., 

2021). However, since it is hard to determine accu-

rately the rate of revolution, researchers have pro-

posed solutions to estimate its possible value by 

some data-driven approaches (Fong et al., 2019; 

Syed et al., 2022; Zhao et al., 2022). 

There are many improvements and applications 

of TSA, which combine TSA with other signal pro-

cessing techniques such as wavelet transform (WT) 

or EMD, including ISTA (Rahman et al., 2011), 

TSMA (Zhang and Hu, 2019), MIR-TSA (Ahamed 

et al., 2014), TSA with windows (McFadden, 1991; 

Smidt, 2010; Pitarresi et al., 2020; Gao et al., 2022), 

TSA algorithm in frequency domain (McFadden and 

Toozhy, 2000; Mishra et al., 2016; Roy et al., 2016; 

Sim et al., 2022). It should be noted that the perfor-

mance of TSA can be enhanced by resampling be-

fore averaging, mostly by interpolation (McFadden, 

1989), which is taken as super-resolution analysis of 

TSA. 

1.3 Contribution of this paper  

In this paper, we propose the TSA-spectrum for 

visualizing possible periodic components of a signal 

in the period domain. While TSA is concise and 

simple, the mathematical properties concerning per-

formance on quasiperiodic signals are intricate. The 

essential mathematical characteristics of TSA are 

presented in three propositions, backed by the con-

gruence theory in number theory. Our work in this 

paper introduces several significant advances on the 

existing literature: 

(1) Theoretical Framework & Enhanced Visu-

alization: We establish the theoretical framework of 

TSA with vital definitions and propositions. The 

TSA-spectrum is introduced to shed light on the pe-

riodic components concealed within a signal. In 

terms of visualization, our method offers an intuitive 

representation that promotes quicker and more pre-

cise fault diagnosis. Furthermore, super-resolution 

analysis is brought in to augment the efficacy of the 

TSA-spectrum (Discussed in Appendix A). 

(2) Comparison with DFT: The relationship and 

divergence between the TSA-spectrum and the Dis-

crete Fourier Transform spectrum (DFT-spectrum) 

are meticulously explored. In a theoretical context, 

TSA emerges as a pivotal complement to DFT, es-

pecially in the long-period (low-frequency) domain. 

This distinction highlights the precision of the TSA 

method in capturing and representing cyclic varia-

tions, which sets it apart from conventional tech-

niques. (Elaborated in Section 2). 

(3) Empirical Validation with Bearing-fault 

Analysis: We undertake a comprehensive case study 

focusing on bearing-fault analysis. By deploying the 

TSA-spectrum on a public dataset of bearing vibra-

tion readings, we effectively extract fault signals 

associated with distinct bearing defects. Such in-

sights are novel, with no similar revelations recorded 

in the bearing-fault diagnosis sphere. Importantly, 

our results underline the commendable performance 

of the TSA-spectrum on QSP, reinforcing its adapta-

bility and versatility in identifying a range of bear-

ing-faults. This, combined with its computational 

efficiency, paves the way for its potential in re-

al-time applications. (Detailed in Section 3). 

(4) In conclusion, our efforts in this paper not 

only introduce a novel approach in the form of the 

TSA-spectrum but also validate its strengths and 

advantages over existing methods in the literature. 

We trust that these contributions address the current 

gaps and foster further research and exploration in 

the domain. 

 

 

2 The relationship and difference between 

TSA-spectrum and DFT-spectrum 

This section discusses the relationship and dif-

ference between the Discrete Fourier Transform 

(DFT) and TSA. DFT is mainly based on the concept 

that a finite-energy signal can be described as a 

combination of a series of sine or cosine functions. 

In contrast, TSA is derived from the essential char-

acteristics of a periodic signal and is quite different 

from signal processing techniques based on signal 

decomposition using sine or cosine functions. A 

comparison between TSA and DFT is illustrated in 

Fig. 1.  

Taking the rectangular function         with 
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the period    as an example, as shown in Fig. 5(a), 

in the time domain, we have  

        {
    [  

  

 
)     

     [
  

 
   )     

     

                                                       

and                   . If    is a period, 

    is also the period of        .  

If we apply DFT to a sequence sampled from 

       , we can only obtain information at the fre-

quencies           in the frequency domain. 

For example, we can observe peaks in the 

DFT-spectrum at     and     , but we know 

nothing for frequencies with     . In contrast, 

when we apply TSA to a sequence sampled from 

       , we can obtain the information in the period 

range of      in the period domain. For example, 

we can observe peaks in the TSA-spectrum at     

and     . Furthermore, an interesting finding is 

that for some specific cases, we can also obtain in-

formation for the period range     , or more ex-

actly, for those   values satisfying           , 

which can be explained by Proposition 1 given in 

Section 2.2. In conclusion, DFT is more powerful in 

dealing with high-frequency (short-period) compo-

nents but is helpless for low-frequency (long-period) 

components where TSA makes up for the weakness 

of DFT.  

 
Fig. 1 Comparison between TSA and DFT in the frequen-

cy and period domains 

 

It should be noted that TSA can be shown to be 

powerful when comparing performances of TSA and 

DFT in two cases: (1) a rectangular signal with only 

one period, 100, denoted as      , and (2) a signal 

combining two rectangular functions with periods 

100 and 150, denoted as      .  

                    

                                     

For both cases, a noise term      is added. It is 

white noise with a zero mean and a standard devia-

tion of 1. For both cases, we sample             

data points with the sampling frequency     . 

Then two discrete sequences,    and    from 

      and       respectively, are obtained.  Lastly, 

TSA and DFT are applied to both    and   . The 

results of the TSA-spectrum and the DFT-spectrum 

are presented in Fig. 2.  

It can be seen in Fig. 2(a) that there are obvious 

peaks for operation cycles        and     . 

Furthermore, we can also observe small peaks at 

      and     . In contrast, in Fig. 2(b), we 

can observe peaks at              and   

   in the frequency domain. However, the 

DFT-spectrum provides little information for 

      . In the result presented in Fig. 2(c), the 

major peaks of the TSA-spectrum are located at 100, 

150, 200, 300, …, which shows the interaction be-

tween these two rectangular functions. It should be 

noted that there is a newly generated period of 300, 

which is the least common multiple of 100 and 150. 

Moreover, we can find small peaks for       in 

the period domain. In contrast, we can observe peaks 

at              and       and at    

           and      in the frequency domain 

in Fig. 2(d), but no information is provided for 

       .  

 

(a) 

 

(b) 
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(c) 

 

(d) 

Fig. 2 Comparison between the TSA-spectrum and 

DFT-spectrum. (a) TSA-spectrum of    ; (b) 

DFT-spectrum of    ; (c) TSA-spectrum of    ; (d) 

DFT-spectrum of    . 

 

Fig. 3 provides a crucial demonstration of the 

practical advantages of TSA (Time-Synchronous 

Averaging) over DFT (Discrete Fourier Transform) 

in scenarios involving signals with low Sig-

nal-to-Noise Ratios (SNR). The physical interpreta-

tion of Fig. 3 is as follows: 

In Fig. 3(a), we initially encounter a noise-free 

signal. Taking the sequence sampled from       as 

an example it can be found that the maximal magni-

tude of    without noise is 1, which is equal to the 

standard deviation of the white noise. However, as 

noise is introduced in Fig. 3(b), the original wave-

form becomes nearly indistinguishable due to the 

low SNR.  

TSA comes to the forefront as a powerful solu-

tion to this challenge. Fig. 3(c) showcases the TSA 

vector when the operation cycle is set to 100. This 

specific choice effectively extracts the underlying 

periodic components, thus revealing the original 

signal, even in the presence of substantial noise. Fig. 

3(d) unveils another facet of TSA. Here, the opera-

tion cycle is configured at 150, resulting in the ex-

traction of a single period of             . Im-

portantly, the result in Fig. 3(c) is not merely a sin-

gular period of             . Instead, it represents 

a blend of one period of and the TSA outcome of 

            , utilizing an operation cycle of 150. 

This phenomenon, known as the Period Aliasing 

Phenomenon (PAP), occurs when a signal encom-

passes two periodic components with periods    

and    satisfying            . 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 3 The signal extraction performance of TSA. (a)    

without noise; (b)    with noise; (c) the TSA vector with 
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the operation cycle set to 100; (d) the TSA vector with the 

operation cycle set to 150. 

 

In summary, Fig. 3 effectively illustrates how 

TSA triumphs in extracting vital periodic compo-

nents from noisy signals. This visual representation 

underscores TSA's prowess in addressing the chal-

lenges posed by low SNR scenarios. Furthermore, it 

highlights the occurrence of the Period Aliasing 

Phenomenon (PAP) as a critical aspect of TSA's 

signal processing capability, ultimately enhancing 

signal extraction, even when confronted with chal-

lenging noise levels. 

 

 

3 Application to the bearing test dataset  

To illustrate the performance of TSA, this sec-

tion presents an application of TSA for bearing-fault 

diagnosis. The vibration of a rotating bearing pro-

vides a stable quasiperiodic signal which can be a 

good example of the advantages of TSA. The dataset 

used in this section is the widely used Bearing Test 

Dataset published by Case Western Reserve Univer-

sity (CWRU) (Bearing data center, September, 

2019). 

3.1 Problem description 

Bearings are one of the greatest inventions of 

mankind. As a type of typical rotating machinery, 

bearings are widely used in all kinds of vehicles, 

trains, wind turbines, engines, etc (Li et al., 2018; 

Teng et al., 2017; Lin et al., 2018). Therefore, it is of 

great importance to develop accurate and robust 

bearing-fault diagnosis techniques to keep machines 

safe and reliable. In this section, we take a typical 

rolling bearing 6205-2RS JEM SKF as an example. 

The structure of Bearing 6205 consists of an inner 

raceway, an outer raceway, and a cage train with 

multiple rolling elements, as illustrated in Fig. 4. 

 
Fig. 4 Illustration of the structure of Bearing 6205-2RS 

JEM SKF.   =39.03 mm,   = 7.94 mm,   =52 mm, 

  =25 mm. There are 9 rolling elements.  

 

In practice, the vibration of a rotating bearing is 

a typical quasiperiodic signal. A perfect bearing 

helps the inner shaft rotate freely and smoothly. Un-

fortunately, it can fail due to mechanical damage, 

crack, wear damage, etc. When a failure occurs, a 

series of high-level short pulses in acceleration can 

be observed, owing to the ball passing over the de-

fect and causing the bearing to vibrate abnormally. 

For example, as illustrated in Fig. 5, there is a defect 

on the inner raceway. The vibration of the bearing 

will contain a short-period signal caused by the ball 

hitting the defect between points B and A. The peri-

od of the fault signal is related to the diameters 2R 

and 2r and to the angular speed of the shaft.  

To address the performance of TSA, we transfer 

data from the CWRU dataset (Bearing data center, 

September, 2019) to the TSA-spectrum through a 

multi-step process. Information on these four data 

samples is presented in Table 1. Each data sample is 

collected in an independent test process. Initially, we 

collect vibration data from the CWRU dataset, en-

compassing signals from various bearing conditions 

and machinery types. Subsequently, we apply data 

preprocessing techniques such as cleaning, noise 

reduction, and resampling to ensure data uniformity. 

The pivotal step involves employing Time Synchro-

nous Averaging (TSA) to align periodic components 

within the data, followed by the calculation of the 

TSA-spectrum. From the TSA-spectrum, we extract 

pertinent features that capture the distinctive charac-

teristics of periodic components. These extracted 

features serve as valuable inputs for machine learn-

ing models employed in bearing condition classifica-

tion and fault detection. The computational overhead 

of this data transfer process varies depending on the 

dataset size and the available computational re-

sources. To enhance efficiency, we explore optimi-

zation strategies, including parallel computing and 

judicious feature selection. This comprehensive data 

transformation process is an integral part of our re-

search, facilitating the accurate and effective identi-

fication of bearing-faults for predictive maintenance 

and machinery reliability improvement. 

Additionally, since there is no relative motion at 

the contact points between the rolling elements and 

the inner or outer raceway, the relationship between 

the angular speeds   and    is given as 

              . For Bearing 6205, we have 
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        , indicating that for every 2.5 cycles of 

the inner race, the cage train moves exactly 1 cycle. 

 
Fig. 5 The hidden periods in the vibration signal of a ro-

tating bearing with defects.  

 

Table 1 Four data samples from the Seeded Fault Test 

Data published by CWRU.  

File 

ID 

Sample 

number 
Fault type 

Operating condi-

tion 

Fault 

size 

1 100 Normal 1725 r/min, 0 HP 

0.007 

inches 

2 122 Ball failure 1796 r/min, 0 HP 

3 
109 Inner raceway 

failure 

1796 r/min, 0 HP 

4 

 

135 

Outer raceway 

failure centered 

to load  

1797 r/min, 0 HP 

 

3.2 Results of TSA 

A.  Major cycle analysis using TSA-spectrum 

First, we apply TSA to four different types of 

bearing signals and calculate their TSA-spectra, as 

presented in Fig. 6. It should be noted that the File 

IDs in Table 1 correspond to the sub-figures in Fig. 6. 

The TSA-spectrum can reveal the cycles hidden in-

side a measured sequence. Note that since the length 

of the original data piece and the rotation velocity of 

the bearing are different from each other, the maxi-

mal value of the sample number, namely, the maxi-

mum of ⌊   ⌋ in the right axis of each subfigure, 

varies for different measured data. By comparing the 

four TSA-spectra in Fig. 6, the following conclu-

sions can be drawn:   

(1) In Fig. 6(a), all peaks show similar values, 

and the values of the TSA-spectrum are smaller than 

those in Fig. (b)-(d). This suggests that the bearing 

condition represented in Fig. 6(a) is relatively more 

stable, with less variance in its signal. 

(2) Except Fig. 6(a), all other TSA-spectra show 

obvious peaks approximately 2.5 MC and 5.0 MC. 

These peaks indicate prominent cycle repetitions at 

these intervals, hinting at specific bearing conditions 

that recur with each rotation. 

(3) In Fig. 6(b), associated with a bearing expe-

riencing ball failure, a pronounced peak is evident at 

1 MC. This peak stands as a distinctive signature of 

ball failure, denoting the defect's interaction with 

other bearing components during each rotation. 

Moreover, Fig. 6(c) manifests a notable peak at the 

operation cycle of 5, which is indicative of "Inner 

raceway failure." An inner raceway defect leads to a 

high-frequency impact each time the ball traverses 

the fault in its revolution, which is prominently rep-

resented as a distinct peak in the TSA-spectrum. 

Combining the parameters of Bearing 6205, for 

each turn of the rotating shaft, the cage train (and all 

rolling elements) moves 0.4 turns. This indicates that 

with every 2.5 turns of the rotating shaft, all rolling 

elements complete one full rotation and, with every 5 

turns, the rolling elements make two full rotations. 

As a result, every 5 turns will reset all conditions of 

both the rotating shaft and rolling elements (and cage 

train), signifying that the basic cycle is 5 MC. Par-

ticularly, we focus on the TSA-spectrum with opera-

tion cycles close to 5 MC, as it represents the prima-

ry resetting point for bearing elements, making it 

essential for understanding bearing health. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 6 Comparison between the TSA-spectra of the four 
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different signal types when a 48k*3 sampling frequency is 

applied. The unit MC means the number of data points 

for one cycle of the rotation shaft. 

 

B. Fault signal extraction 

By exploring the TSA-spectra, we can obtain 

the precise basic cycle of a given signal. Then, we 

can directly apply the TSA to the signal with the 

precise operation cycle and obtain the denoised sig-

nal of our interest.   

Taking the fourth data sample in Table 1 as an 

example, the result of TSA is illustrated in Fig. 7(a). 

The shifted raw data is presented in cyan, while the 

black curve is the TSA vector, namely, the averaged 

result of the shifted raw data. The operation cycle is 

167.171 (ms), which is the time required for 5 turns 

of the rotating shaft. It can be observed that there are 

18 obvious pulse-like signals. Considering that there 

are 9 rolling elements of Bearing 6205, the 18 

pulse-like signals can be divided into two groups. 

The first 9 pulses, namely, (1)~(9) in Fig. 7(a), are 

the first time the 9 rolling elements run across the 

defect area on the outer race, while the other 9 pulses, 

(1’)~(9’), relate to the second time the rolling ele-

ments run across the defect area. Note that the pulses 

( ) and ( ’) are actually the signals of the same roll-

ing ball running across the defect area. However, 

there is a 180  phase difference on the inner race 

between pulse ( ) and ( ’), since every 2.5 turns of 

the rotating shaft lead to a 180  phase change on the 

inner race.    

Let us focus on the waveform of pulse (3). We 

zoom in on the x-axis as presented in Fig. 7(b). It can 

be observed that the shifted raw data consists of a 

series of similar waveforms with small phase differ-

ences. Particularly, we visualize the shifted raw data 

in an image style, as shown in Fig. 7(c), where the x-, 

y- and z-axes are time, the sample number and the 

magnitude of acceleration, respectively. Fig. 7(c) 

shows a periodic change in phase space, at approxi-

mately 0.12 (ms) for every 5 turns of the rotating 

shaft. The phase changing phenomenon is caused by 

the unstable rotating speed of the driving motor, 

which will lead to an additional smoothing effect on 

the TSA vector.  

Additionally, we can estimate the phase differ-

ences between every two sampling cycles of the 

shifted raw data by using a correlation function. Al-

lowing a phase shift operation, we obtain the result 

of aligned raw data and a corrected TSA vector, as 

illustrated in Fig. 7(d), where the lines in magenta 

are the aligned raw data within one major cycle. 

Similarly, as shown in Fig. 7(c), we also visualize 

the aligned raw data in an image style as displayed in 

Fig. 7(e), where the parallel stripes indicate that the 

variance of rotation speed is reduced. To address the 

performance of the alignment process, we calculate 

the standard deviation of the shifted raw data and 

aligned raw data with respect to different sample 

numbers, namely, along the y-axis of Fig. 7(c) and 

(d). The standard deviation of the aligned raw data is 

reduced to 0.16 from that of the shifted raw data, 

which is 0.72. The result in Fig. 7(d) shows a good 

repeatability of the acceleration waveform of a ro-

tating bearing. 

 
Fig. 7 The TSA of ORF_CE sample ‘135_1796.csv’’. The 

result is given at an operation cycle of 167.171 ms. The 

smoothing effect            .   

C. Extracted fault signal comparison 

By applying the TSA method to the four data 

samples presented in Table 1, we can extract the 

featured waveform within one entire cycle of each 

case. The results are presented in Fig. 8. The follow-

ing points can be drawn from the results in Fig. 8:  

(1) For a normal bearing without defects, as 

presented in Fig. 8(a) and (b), the TSA vector over 

the operation cycle of 5 MC is a stationary waveform 

consisting of two sinusoidal signals with cycles of 

approximately 2.78 (ms) and 0.12 (ms), respectively. 

These two sinusoidal signals relate to the natural 

vibration period of the test apparatus.  

(2) In Fig. 8(c) and (d), the BF case, the TSA 
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vector contains information on both the rotation of 

the cage train and the self-rotation of the rolling el-

ements. Each hit between the defect area on the roll-

ing elements and the contact point on the inner race 

or outer race will cause a hitting signal. Since the 

hitting frequency is higher than the vibration damp-

ing speed, different hitting signals overlap together, 

and it is difficult to find the pattern of a single hit.  

(3) In Fig. 8(e), the IRF case, we can observe 

approximately 27 pulse-like patterns within the en-

tire cycle. Similarly, in Fig. 8(g), the ORF_OE case, 

there are 18 significant pulse-like patterns. Both fault 

types are related to the number of rolling elements in 

the cage train, which is 9 for Bearing 6205. Conse-

quently, we know that within a basic cycle of 5 MC, 

each ball hits the defect area 3 times for the inner 

race and 2 times for the outer race. 

 
Fig. 8  Extracted waveforms of different fault types. (a), 

(c), (e), and (g) relate to file ID 1 to 4 in Table 1. (b), (d), 

(f), and (h) are enlarged views of the first 10 ms of the 

waveform. 

 

 

4 Conclusions 

In this paper, a TSA-spectrum based on su-

per-resolution analysis is proposed for visualizing 

possible periodic components of a signal in a period 

domain. To reveal the mathematical properties re-

garding its performance on a quasiperiodic signal, 

we proposed and proved three propositions. In a case 

study, TSA has shown a great advantage in pro-

cessing the vibration signal of a bearing with a defect. 

From the application level, further effort can be 

made toward applying TSA in other fields with 

problems of QSP. At the theoretical level, we can 

broaden our studies to reveal more about the period 

aliasing phenomenon (PAP). There is great potential 

in taking advantage of the PAP to reconstruct hidden 

periodic components, even if the periods share 

common dividers.  

The main findings are summarized as follows: 

(1) The theoretical framework of TSA with es-

sential definitions and propositions is proposed to 

reveal the mathematical properties regarding its per-

formance in analyzing the periodic components hid-

den in a quasiperiodic signal. Super-resolution anal-

ysis is also introduced to enhance the performance of 

the TSA-spectrum. 

(2) The relationship and difference between the 

DFT and TSA are discussed in detail. It is demon-

strated that TSA-spectrum can present more details 

of the cross effects between different periodic com-

ponents of a quasiperiodic signal. TSA can be an 

important supplement to DFT in the long-period 

(low-frequency) range. 

(3) A case study is performed to illustrate the 

good performance of TSA for bearing-fault diagnosis. 

The major cycle analysis for four different types of 

bearing signals using the TSA-spectrum is presented. 

Then the TSA is applied to the signal with the pre-

cise operation cycle and the denoised signal of the 

relevant interested zone is obtained. The extracted 

fault signals for four data samples are presented. The 

results show that TSA has a great advantage in pro-

cessing the vibration signal of a bearing with a de-

fect.  

(4) TSA could be extended to reveal infor-

mation about the PAP, especially for applications 

involving quasiperiodic signal processing. 

In summary, our study introduces and demon-

strates the effectiveness of the TSA-spectrum and 

super-resolution analysis in the context of Bear-

ing-fault Signal Identification. These techniques en-

able the precise extraction and analysis of periodic 

components within bearing signals, even in chal-

lenging scenarios involving noise and changing pe-

riodicities. This enhancement significantly contrib-

utes to the reliability and accuracy of bearing-fault 

identification, a crucial aspect of predictive mainte-

nance, and to the overall improvement of machinery 
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and industrial system reliability. By incorporating 

these advances, we pave the way for more efficient 

and effective fault diagnosis in the field of bearing 

health monitoring. 
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目 的：精密冲压工艺过程中环境变量的波动导致工件

出现破裂和皱褶等缺陷。本文旨在探讨精密

冲压工艺过程中环境变量（工件材质、冲压

速度、压力和温度变化等）对冲压质量的影

响，研究适应性工艺设计方法，以提高精密

冲压工件的质量。 

创新点：1. 通过马尔科夫模型方程，推导出环境变量与精

密加工波动公差之间的关系；2. 建立试验模型，

成功模拟适应性冲压工艺过程。 

方 法：1. 通过实验分析，推导出冲压过程中的晶粒流

动和强度变化对成型 零件的尺寸公差波动

产生较大的影响（图 2 和 3）；2. 通过理论

推导，构建环境变量与加工波动公差之间的

关系，得到适应性的工艺参数调节方案（公

式(6)）；3. 通过仿真模拟，运用适应性设计

方法在精密冲压过程中对工艺参数进行适

应性调节，验证所提方法的可行性和有效性

（图 5）。 

结 论：1. 精密冲压过程中工艺参数需要根据不同的环

境变量进行调节；2. 环境变量与加工波动公

差之间存在映射关系，运用隐马尔科夫模型

实现关联表征；3. 运用适应性设计方法对精

密冲压工艺参数进行调节，加工波动公差明

显减小，工件质量得到提高。 

关键词：时间同步平均；频谱；准周期信号处理；超分辨

分析；轴承故障检测 
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