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Abstract: Performing diverse motor skills with a universal controller has been a longstanding challenge for legged robots. While 

motion imitation-based reinforcement learning (RL) has shown remarkable performance in reproducing designed motor skills, the 

trained controller is only suitable for one specific type of motion. Motion synthesis has been well developed to generate a variety 

of different motions for character animation, but those motions only contain kinematic information and cannot be used for control. 

In this work, we introduce a control pipeline combining motion synthesis and motion imitation -based RL for generic motor skills. 

We design an animation state machine to synthesize motion from various sources and feed the generated kinematic reference 

trajectory to the RL controller as part of the input. With the proposed method, we show that a single policy is able to learn various 

motor skills simultaneously. Further, we notice the ability of the policy to uncover the correlations lurking behind the reference 

motions to improve control performance. We analyze this ability based on the predictability of the reference trajectory and the 

quantified measurements can be used to optimize the design of the controller. To demonstrate the effectiveness of our method, we 

deploy the trained policy on hardware and, with a single control policy, the quadruped robot can perform various learned skills, 

including automatic gait transitions, high kick, and forward jump.  
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1  Introduction 

 

In recent years, learning-based control has 

shown outstanding performance on quadruped robots 

traversing complex terrains (Lee et al., 2020; 

Siekmann et al., 2021b; Agarwal et al., 2022; Miki et 

al., 2022), achieve better performance (Dao et al., 

2021; Jin et al., 2022), or perform agile skills (Huang 

et al., 2022; Ji et al., 2022). Among various RL 

methods, imitation-based RL is a convenient but 

powerful method to obtain control policies based on 

given examples. Recent works have shown many 

impressive skills including high-speed running (Jin, 

et al., 2022), hopping (Siekmann et al., 2020a), back-

flip (Fuchioka et al., 2022), etc. However, most of that 

work focuses on standalone predefined motion clips. 

Learning and switching among various skills is hard 

to achieve without further modifications. 

In the computer graphics community, motion 

synthesis has been widely studied to generate 

controllable and responsive motions for character 

animation. While some researchers focus on 

physics-based character animation, most of the 

methods used in industry are kinematics animation. 

Those well-established methods for kinematics 

animation are a good starting point for motion 

imitation for achieving controllable motion for 

quadruped robots.  

In this work, we introduce a control pipeline as a 

combination of motion synthesis and motion 

imitation. A series of reference trajectories serve as 

the interface between those two parts. The interface 

only contains basic kinematics information and thus 

is compatible with all kinds of data sources, including 

motion capture, sketch, and optimization. During 
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training, a control policy is trained to imitate a set of 

given motion clips. Based on those given motions, an 

animation state machine is constructed to generate 

reference trajectories for online control according to 

the command from the user. We deploy the proposed 

control pipeline on Unitree Go 1 and demonstrate 

skills including locomotion with gait transition, high 

kick, and jump, from motion capture, sketch, and 

optimization, respectively. We further investigate the 

effect of the length of the reference trajectories in the 

interface. While longer reference trajectories can 

bring better tracking performance in general, we 

notice the ability of the policy to predict future steps 

of the reference trajectory base on given steps. Such 

ability can reduce the necessary length of the 

reference trajectory, and the performance gain from 

the reference trajectory is affected by the 

predictability of the trajectory itself. 

 

 

2  Related Work 

2.1  Imitation-based reinforcement learning for 

legged robots 

The design of the reward function in reinforce-
ment learning is a key part that affects the final be-
havior of trained policy. Motion imitation has been 
demonstrated as a powerful tool to simplify the design 
of reward, which is expressed as the sum of goal 
reward and imitation reward. Current methods in this 
field can be divided into two categories, trajecto-
ry-based methods (Peng et al., 2018) and style-based 
methods (Peng et al., 2021). Trajectory-based meth-
ods are similar to vanilla reinforcement learning. The 

imitation term is calculated using the error between 
the current state and the corresponding state on the 
reference trajectory. In the observation space, the 

reference trajectory can be either encoded as phases 
or directly kept in the form of joint and base states. 
Various skills including locomotion, hopping, back-
flip, etc. have been presented in previous work with 

such methods (Peng et al., 2020; Siekmann, et al., 
2020a; Siekmann et al., 2020b; Siekmann et al., 
2021a; Fuchioka, et al., 2022; Jin, et al., 2022; Shao et 
al., 2022). Policies with phase encoding are limited to 
a certain motion or a small number of motions that 

share the same encoding while, with raw joint and 
base states, the policy can be applied to more tasks.  

To extend to more skills, some of the research 
(Siekmann, et al., 2020a; Shao, et al., 2022) uses a 
shared encoding among various gaits to achieve gait 

transitions, but the extensibility of those encodings is 
limited. The multiplicative model (Peng et al., 2019) 
can learn multiple motion clips and transfer that 
learning to composite tasks but it involves a complex 
model and the structure of the high-level policy is 
different among various tasks. (Peng, et al., 2020) 
used a series of future reference steps in the observa-
tion and held the same structure among various tasks, 
but each policy only works for the corresponding 
motion clip. 

Style-based methods are more complex than 
vanilla RL. Instead of frame-to-frame comparison, a 
discriminator is used to distinguish between the re-
produced motions and the reference motions. The 
imitation reward is obtained based on the discrimina-
tor. The training is done in an adversarial way. Since 
such methods do not involve frame-to-frame match-
ing to the reference motion, no phase or reference 
trajectory is used in the observation. Even though the 

style-based reward ensures more flexibility for the 
policy, seamlessly switching among various tasks 
requires more effort. Compared to trajectory-based 
methods, there is less work on legged robots 
(Escontrela et al., 2022; Li et al., 2022; Vollenweider 
et al., 2022) with style-based methods. 

To extend to more skills, one-hot labels 
(Vollenweider, et al., 2022) can be used to switch 
among three kinds of skills. Previous research 
(Escontrela, et al., 2022) shows that the simple AMP 
model can learn locomotion in various gaits, but only 
the velocity is controllable. Hierarchy models can be 
used to mix the pre-trained skills (Peng et al., 2022), 
but a task-specific high-level policy is also involved, 
and currently, to the best of our knowledge, there is no 
hardware transfer of this method  

 

2.2  Character animation 

In computer graphics, many techniques for 

character animation have been developed in the fields 
of research and industry. Character animation can be 
divided into two classes, kinematics animation, which 
does not consider physics laws, and physics-based 
animation. Kinematics-based animation has been 
widely used in production and the branch most rele-
vant to us is motion synthesis, which aims to generate 
vivid and responsive motions according to user 
commands, commonly based on motion capture. An-
imation state machines and motion matching (Clavet, 
2016) are two popular methods in the industry, while 
in the research community, many data-driven ap-
proaches have been proposed to work with a large 
amount of data in more efficient ways (Holden et al., 
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2017; Zhang et al., 2018; Starke et al., 2019; Holden 
et al., 2020; Ling et al., 2020; Starke et al., 2022). On 
the other hand, physics-based character animation 
aims to build controllers for the character in a physics 

simulation to make the animation look real (Peng, et 
al., 2018; Peng, et al., 2021; Peng, et al., 2022) . The 
idea of using RL-based motion imitation for legged 
robots is also transferred from this area (Xie et al., 
2019; Peng, et al., 2020). However, those methods 
typically focus on dealing with the physics in 
low-level control, rather than high-level motion syn-
thesis compared to kinematics-based animations.  

Our work can be regarded as a combination of 
the above two kinds of methods and its transfer to the 
robot. We build a control pipeline using the animation 
state machine for motion synthesis and refer-
ence-based motion imitation for control; thus con-

trollable motions can be generated by the animation 
state machine and tracked by the controller on the 
robot.  
 
 
3  Control Pipeline 

3.1  Overview 

Fig. 1 shows an overview of the proposed con-
trol pipeline. From the most abstract point of view, the 
control pipeline consists of two major modules, mo-
tion generation, and motion imitation. The reference 
trajectory serves as an interface across those two 
parts. The motion generation module generates the 

kinematic reference trajectories according to the user, 
and the motion imitation module tracks them. 

More precisely, it starts with a collection of de-
sired motion clips, from either motion capture, opti-

mization, or sketch. The motion clips are retargeted to 
the desired quadruped robot if needed. Then, a control 
policy is trained in simulation to imitate the collected 
motions. When it comes to online control, an anima-
tion state machine is designed to generate controllable 
motions from the dataset. With those motions orga-
nized in the same way as offline training, the robot 
hardware can track those motions under the trained 

control policy. 
 

3.2  Motion capture data 

An open-source motion-capture dataset for 

quadruped animals (Zhang, et al., 2018) is used in this 
work. Natural locomotion and gait transitions are 
recorded in the dataset. The dataset was originally 
collected for animation, and thus the morphology is 

different from the robot, as shown in Fig. 2. The mo-
tion capture data is retargeted to the robot through 
inverse kinematics (IK). Since the robot has a rigid 
trunk, the position and orientation of the trunk is fitted 
from four shoulders in motion capture with the least 
square method. Once the trunk is fixed, the joint po-
sitions are obtained using IK by keeping four feet as 
the key points, after scaling the size from animal to 
robot. Due to technical limitations of motion capture, 
the heights of the stance feet are often noisy, which 

Fig. 1  The illustration of the overall control pipeline proposed in this work. In offline training, the policy is trained to 

imitate motions from the presented dataset. For online control, a state machine is used to generate motions according to 

user command based on the dataset, and the trained policy takes the generated reference trajectories as part of the input 

to track the commanded motion with the hardware. 
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may confuse the controller in the following workflow. 
To mitigate the effect of such noise, a thresholding 
technique (Kang et al., 2021) for foot height is 
adopted in pre-processing. Feet heights under the 
threshold are set to zero and gradually increase to the 
original values. 

 

 

Fig. 2 (a) The skeleton of motion capture. Circles represent 

shoulders and feet while the cuboid represents the trunk. 

(b) The configuration of the robot. There are overall 12 

joints and 3 for each leg. All 12 joints are actuated by mo-

tors. Blue arrows represent the directions of the joints on 

one leg. 

 

3.3  Other motions 

Apart from motion capture, sketch and optimi-
zation are two other sources of reference motion. A 
major advantage of motion capture is that it looks 
natural, but it is hard to record the motions for certain 
tasks such as the kick and jump of a quadruped ani-
mal. Compared to motion capture, sketch and opti-
mization are efficient ways to design motions. Sketch 
trajectory is suitable for simple tasks. Sketch starts 
from the design of an approximate trunk trajectory 
and task-related foot trajectories regardless of dy-
namics, and then joint states are obtained through IK. 
For highly dynamic tasks, the sketched trajectories 
may be too far from the dynamically feasible trajec-
tories and be hard to reproduce even in simulation. 
For trajectory optimization, the solution satisfies 
constraints from the approximated robot dynamics 
determined by the model. Such optimized trajectories 
are better references for highly dynamic tasks, com-
pared to sketch trajectories without any dynamic 
constraints.  

 

3.4  Animation state machine 

The animation state machine is a popular ap-
proach for character animation in the field of com-
puter graphics. The animation is broken down into 
several states and transitions, and each has a corre-
sponding motion clip. With a set of transition rules, 
the character may transit from one state to another, or 
stay in the current state, according to the command 

from the user. In the meanwhile, the corresponding 
motion clips are played one by one, resulting in the 
controllable animation shown on the screen.  

To achieve controllable locomotion, nine states 
are defined by traversing three levels of forward ve-
locities (stand, slow speed, fast speed) and three 
moving directions (forward, left, and right). All 
pairwise transitions among all the locomotion states 
are allowed and the corresponding motion clips are 
extracted from the dataset. The rules for gait transi-
tions are automatically included here. For sketched 
and optimized motions, only transitions between task 
motion and the standing state are allowed. The robot 
in locomotion states can first stop to the standing state 
and then transit into the task motion, since designing 
direct transitions between locomotion and special 
tasks is tedious and less necessary.  

 

3.5  Sim-to-real reinforcement learning 

The policy is trained in simulation and trans-
ferred to the robot hardware. The policy is trained to 
imitate the given motion while satisfying the rules of 
physics and other constraints defined in the simulator. 

The overall control architecture is illustrated in 
Fig. 3 and the control policy in RL is formulated in the 
same way. The observation of the policy is 𝑿 =

{𝒒𝑗 , �̇�𝑗 , �̇�𝑏𝑅
, 𝒓𝑔, 𝒙𝑡:𝑡+𝑁

𝑟𝑒𝑓 } ∈ ℝ30+19𝑁 and can be divid-

ed into two categories. The first part is the state of the 
robot, including the positions and velocities of 12 
joints and the orientation and angular velocities of the 
trunk. The second part is a series of reference trajec-

tories starting from the next step. 𝒙𝑡
𝑟𝑒𝑓 =

{𝒗, �̂�𝑔, ℎ̂, �̂�𝑗 } ∈ ℝ19  represents the reference motion at 

𝑡 step. Velocity, body orientation, height, and joint 
positions are included in the observation as a de-
scription of the imitation task. The effect of these 
trajectories is discussed in section IV. Detailed de-
scription of the notions can be found in Table 1. 

 

 

Fig. 3 The control architecture of the proposed method. 

The colors of the arrows stand for the frequency, and the 

command for motion generation is not required to be up-

dated at a specific frequency. 
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The action of the policy is 𝒒𝑗
𝑑𝑒𝑠 ∈ ℝ12 , followed 

by a PD controller to obtain the final low-level torque 

command. Long short-term memory (LSTM) neural 
network is used as the policy due to its ability  to 

capture historical information during dynamic pro-
cesses (Siekmann, et al., 2020b). 

The reward design is like many previous works 
using motion imitation. It is a weighted sum of several 
terms: 
𝑟 = 0.2𝑟𝑣 + 0.1𝑟 + 0.1𝑟𝑏 + 0.2𝑟𝜏 + 0.4𝑟𝑗#(1)

𝑟𝑣 = exp(−8‖�̇�𝑏 − 𝒗‖2) #(2)

𝑟 = exp (−80‖𝑞𝑏𝑧
− ℎ̂‖

2
) #(3)

𝑟𝑏 = exp (−80‖𝒓𝑔 − �̂�𝑔‖
2
) #(4)

𝑟𝜏 = 0.5 exp(−‖0.05𝝉‖2) + 0.5 exp(−‖0.5�̇�‖2) #(5)

𝑟𝑗 = 0.25 exp (−2‖Δ𝒒𝑗‖
2
)

+0.75 exp (−2‖Δ�̇�𝑗‖
2
) #(6)

 

𝑟𝑗 encourage the policy to track the reference trajec-

tories at joint level and is the major part during learn-
ing. 𝑟𝑣 ,  𝑟 and 𝑟𝑏 reward the policy for following the 

velocities, height, and posture of the trunk, respec-
tively. Those are the tracking task at high level. 𝑟𝜏  

penalizes the large or rapid torque command for the 
joints, which is undesired in the hardware.  

For each rollout, the reference state initialization 
(RSI) technique (Peng, et al., 2018) is used to initiate 
the robot at a random timestep on the reference tra-
jectory. To accelerate training, fixed trajectories 
sampled from the dataset are used rather than synthe-
sis motion. Early termination (Peng, et al., 2018) is 
also used to stop the rollout when the robot falls, or 
the state is too far from the reference trajectory. For 
sim-to-real, domain randomization is adopted to 
minimize the gap between simulation and real world 
and prevent overfitting. For the robot, manufactory 
errors are simulated by randomizing the dynamics 
and geometric sizes around the designed values. For 
the ground, a wide range of friction coefficients is 
used for different rollouts to simulate various ground 
conditions. Random external forces and torques are 
applied to the robots, and stochastic errors are added 

to the observations according to the accuracy of the 
sensors of the robot. Details on domain randomization 
can be found in Table 2. 

 

Table 1 Notions for Model Representation 

Notion Dimension Description 

𝒒𝑗  12 Joint positions. 

�̇�𝑗  12 Joint velocities. 

�̇�𝑏𝑅
 3 Angular velocities of the trunk. 

𝒓𝑔  3 
Angular positions of the trunk, represented by the components of the gravity direction in the 

trunk frame. 

𝒙𝑡:𝑡+𝑁
𝑟𝑒𝑓

 19𝑁 𝑁 steps of future reference trajectories.  

�̂� 3 The velocity of the reference state in the forward, lateral, and yaw directions.  

�̂�𝑔 3 The angular position of the trunk of the reference state, in the same representation as 𝒓𝑔  

ℎ̂ 1 The trunk height in the reference. 

�̂�𝑗  12 The joint positions of the reference state. 

𝒒𝑗
𝑑𝑒𝑠 12 The desired joint position.  

 

Table 2 Domain Randomization 

Term Unit Distribution 

Mass for each part kg 𝒩(1.0, 0.05) × origin values 

Geometric size m 𝒩(1.0, 0.05) × origin values 

Ground friction - 𝒰(0.4, 1.2) 

Joint position noise rad 𝒩(0.0,0.002) 

Joint velocity noise rad/s 𝒩(0.0,0.3) 

Body posture noise rad 𝒩(0.0,0.1) 

Angular velocity noise rad 𝒩(0.0,0.3) 

 
4  Future Reference Trajectory 

 
In the problem of optimal control, the target 

functional consists of costs at the endpoints and along 
the whole process. The specific design of the target 
functional varies among different tasks, but in refer-

ence tracking tasks, the most common costs consist of 
the tracking errors against the reference and actuation 
costs. Model predictive control (MPC) solves the 
optimal control problem repeatedly using the latest 
state and performs the latest output of the optimal 
control problem. In the tracking problem, each time  
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MPC updates, a slide window of future reference 
trajectory is fetched, and new results are obtained 
with regard to the new measurements and the refer-
ence. To this end, the problems of MPC and RL are in 
the same formulation, both obtaining commands 
based on the current state and a slice of future refer-
ence trajectory, and both optimizing tracking errors 
and actuation costs. 

The major difference is that MPC is based on 
online optimization while RL is based on offline op-
timization. As an online optimization approach, MPC 
itself does not contain any prior knowledge of the 
reference motion. The length of the reference trajec-
tory and the prediction horizon must be the same to 
formulate the target functional. Usually, the predic-
tion horizon and the updating frequency are a 
trade-off limited by the onboard computational pow-
er. A longer prediction horizon will bring a larger 
calculation burden, while a shorter one will harm the 

quality of the results. As an offline optimization ap-
proach, the RL policy can gain knowledge about the 
trained reference dataset. With this knowledge, the 
policy can predict later parts of the trajectories based 
on the given ones and is able to work with very few 
steps of reference trajectory without worrying about 
performance.  

The task of prediction is fitting a dataset like 

{(𝒙𝑡−𝑁:𝑡
𝑟𝑒𝑓 , 𝒙𝑡:𝑡+𝑀

𝑟𝑒𝑓 ), … }, and thus the capability of pre-

diction is determined by the correlation inside the 
dataset, or the mutual information between previous 
steps and later steps, instead of the policy. For trajec-
tories with a strong correlation between the adjacent 
data before and after, the policy can predict longer 
later trajectory based on a few steps of the given tra-

jectory. For example, for periodic motions, the policy 

can memorize the whole trajectory and identify the 
current position on it to achieve a completely accurate 
prediction. For trajectories with weak correlation, 

such as unexpected transitions, the policy is unable to 
predict future changes based on given steps, and thus 
more steps are required to complete the necessary 
information. Otherwise, a degradation in performance 
will appear. For a dataset with many trajectories, the 
overall correlation, or the predictability, also depend 
on those trajectories within this dataset. The correla-
tion tends to be strong when a set of simple and dis-
similar trajectories are included in the dataset and 
tends to be weak in the case of complex and similar 
trajectories. The prediction ability only applies to the 
learned dataset and has no contribution to trajectories 
completely out of the distribution, like many other 
machine learning problems. However, since the pro-
posed method only uses learned motions in the con-
trol pipeline, this limitation can be ignored in our 
work, along with the issue of overfitting. 

5  Results 

To demonstrate the efficiency of our control 
pipeline, the control policy is trained in simulation 
and then deployed on the hardware of Unitree Go 1. 
The agent is trained to imitate motions from motion 
capture, sketch, and optimization simultaneously. 
Similar performances are observed on both simula-
tion and hardware. This section first demonstrates 
three sorts of learned motions on hardware, as shown 
in supplementary videos 1-4. All the skills are con-
trolled by the same policy, as shown in the supple-
mentary 5. The policy can achieve similar perfor-
mance when learning multiple skills and single skills. 
Besides, we evaluate the role of the future reference 
trajectories by detailed analysis on data from simula-
tion. 

5.1  Experimental setup Une
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The control policy used in this section is trained 
in simulation. RaiSim (Hwangbo et al., 2018) is used 
as the physics engine, with an LSTM neural network 
composed of two hidden layers of 64 units in each. 
The PPO algorithm (Schulman et al., 2017) imple-
mented by the stable-baselines (Hill et al., 2018) 
package is used for training. Similar to previous work 
(Shao, et al., 2022), the standard deviation of the 
action distribution is trainable and initialized at 1.0 
but ended at 0.1 to keep the exploration field at a 
reasonable scale in the late stage of the training pro-
cess. The policy is designed to work at 100 Hz while 
the physics engine works at a higher frequency of 400 
Hz. On a workstation with Intel Xeon E5-2296v4 
CPU and GTX 1080Ti GPU, the policy converges in 
about 3 h. For deployment, the LSTM policy is 
re-implemented with C++ and Eigen. The policy can 
run at 100 Hz as designed both on a small PC with 
i5-1135G7 and Raspberry 3 on Unitree Go 1. 

 

5.2  Controllable locomotion with gait transitions 

The proposed control pipeline is deployed on the 
hardware as a validation of the overall method. In this 
sub-section, we evaluate the control performance to 
track commanded locomotion with gait transitions. 
Fig. 5a shows the experiment of command tracking 
on the hardware. The animation state machine gener-
ates reference motion for turning in changing direc-
tion according to user command, and the robot can 
follow those commands with the policy. More results 
of command tracking on the hardware can be found in 
the supplementary video 1. Fig. 4 shows the results of 
gait transition among stand, trot, and pace, sequen-
tially. The animation state machine extracts the rules 
for gait transitions from motion capture data and re-
produces those transitions automatically according to 
the speed command. For rapid starts from the stand-

Fig. 4 The locomotion contains stance, trot gait, and pace gait sequentially. (a) The comparison between the synthesized 

motion and the controlled hardware. (b) The comparison of forward trunk velocity between the robot and the reference 

motion from simulation. (c) The results of the foot contact sequence of the robot. The cyan blocks represent the actual 

contact status and the curves represent the height of four feet in the reference.  

 

Une
dit

ed



|  J Zhejiang Univ-Sci A (Appl Phys & Eng)   in press 8 

ing state, animals tend to use trot gait, in which the 
movements of diagonal legs are approximately in 
sync, and for low-speed locomotion, animals tend to 
use pace gait, in which the movements of legs on the 
same lateral side are in sync. With our controller, the 
natural gait transitions are carried out on the robot. 
Besides, Fig. 4 also presents the velocity and foot 
contact sequence, which are both major characteris-
tics of the animation. The data from simulation shows 
that the robot can track the reference velocities well 
and reproduce the same gaits as the animation. 
Hardware experiments for gait transition can be found 
in supplementary video 2.  

 

5.3  Motion from sketch and optimization 

In addition to motion synthesis, motions from 
sketch and optimization are also learned and deployed 
on the hardware. For sketch motion, the robot is de-

signed to raise the body in pitch direction up to 40° 
and use one of the forelegs to reach a target height up 

to 50 cm. The reference motion is a manually scripted 
kinematics trajectory without physics constraints. For 
optimization, the robot is designed to jump forward in 
0.45 m. Floating base model and direct collation 
methods are used for numerical optimization. The 
optimized trajectory is dynamically feasible but 

open-loop. Fig. 5 shows some snapshots for the 
hardware experiments, demonstrating the effective-
ness of our approach. As mentioned above, the con-
trol policy for those two tasks is the same one as the 
previous subsection. More detailed results can be 
found in the supplementary video.  
 

 

Fig. 6 Hardware experiment for (a) command tracking 

from motion capture, (b) high kick from sketch, and (c) 

forward jump from optimization. 

 

5.4  Learning Performance 

Reference trajectories from sketch and motion 

capture are kinematical trajectories and cannot be 
used for control directly. The solution of trajectory 
optimization contains dynamic information but is 
open-loop and based on a simplified mode. The pro-
posed method can form a dynamic-feasible close-loop 
controller for all three types of skills based on those 
inaccurate trajectories. Fig. 6 shows the learning per-
formance for multiple skills and a single skill. Com-
pared to policies for a specific skill, the policy trained 
for all three types of skills can achieve similar per-
formance for each skill. Learning multiple skills only 

Fig. 5 Comparison for learning curves for multiple-skill policy and single-skill policy. (a) Performance for jump task. (b) 

Performance for kick task. (c) Performance for locomotion task. 
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slows down the learning speed but does not com-
promise the final performance. 

 

5.5  The effect of future reference trajectory 

Since it is very difficult to directly measure the 
correlation among high-dimensional data, a neural 
network is used to describe the predictability of the 
reference trajectory. The neural network fits the da-

taset using the first N steps of the reference trajectory 
as input and the last M steps as output. The specific 
behavior of this ad hoc neural network is not identical 
to the controller, and the prediction model itself has 
no effect on control performance. However, the pre-
diction error from the neural network can be treated as 
a semi-quantitative indicator of the predictability on a 
certain interval of the trajectory. To fully reflect the 
correlation among reference trajectories, the model is 
tuned to best accuracy. For illustration, a multi-layer 
preceptor is trained to predict the next 30 steps based 
on 2 steps, and the prediction error and results for the 
reference trajectory used in Fig. 4 are shown in Fig. 7. 
For common gaits, e.g., at t=7 s or t=13 s, the predic-
tion error is low, and the trained MLP can accurately 
predict the future time steps, as shown in Fig. 7b. In 
the standing state, the prediction error is even lower. 

However, during gait transitions, the prediction error 
rises, corresponding to low predictability, and the 
prediction results of t=9.9 s are shown in Fig. 7c as an 
example. The MLP can no longer predict future ref-
erence trajectories accurately.  

To evaluate the effect of the predictability of the 
trajectory on the final control performance, control-
lers with different numbers of steps in the input are 

trained for comparison. The zero-padding technique 
is used to keep all controllers in the same structure. 
For control policies with less than 32 steps of refer-
ence trajectories, the additional dimensions are set to 
zero. Fig. 8 shows the root mean squared error 

(RMSE) of velocities, joint positions, and body pos-
ture of different lengths of reference trajectories at 
different levels of predictability in locomotion tasks. 
The velocity error stands for the performance of 
command tracking, which is the major performance 
indicator in locomotion tasks. It is not affected by the 
length of the reference trajectory in highly predictable 
cases like periodic motions, while in cases with a low 
level of predictability like gait transitions and velocity 
changing, there is a significant decrease in tracking 
errors as the length of the reference trajectory in-
creases. The joint position error represents the simi-
larity between the reproduced motion and the refer-
ence motion. The similarity slightly increases as the 

Fig. 7 Illustration for the measurement of predictability. (a) The prediction error over time in the task from stance to trot 

gait and ending in pace gait. The first transition is around t=5 s and the second is around t=10 s. The positions of the 

abductor, hip, and knee joints of the front right leg are selected to illustrate the comparison of the predicted trajectory and 

the original trajectory at (b) t=13.41 s and (c) t=9.92 s, as examples of periodic motions and transitions, respectively. 
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length of the reference trajectory increases regardless 
of predictability. The body posture error measures the 
difference of the attitude between reproduced motion 
and reference motion; it can be obtained through 
Δ𝜃 = 𝒓𝑔 ⋅ �̂�𝑔, in which 𝒓𝑔 represents the actual body 

posture and �̂�𝑔r the reference trajectories. There is no 

significant effect on the balance of the robot from the 
length of reference trajectory or the level of predict-
ability in the test cases because the variation of body 
posture on the dataset of locomotion is small com-
pared to joint position and velocity. Overall, the sta-
tistical results show that for trajectories that can be 
easily predicted, longer reference trajectory in input 
has no contribution to the control performance. The 
controller itself can learn to predict the future trajec-
tory and take actions according to a long reference 
trajectory. For unpredictable motions, like sudden 
start or gait transitions, the controller can no longer 
predict the future reference trajectory. Controllers 
with less reference trajectory can only act according 
to the given length of reference or on some incorrect 
guesses, resulting in poor control performances, in-
cluding large tracking errors or unsteady body pos-
ture. 
 

 

Fig. 8 The effect of the length of the reference trajectory on 

(a) velocity error, (b) joint position error, and (c) body 

posture error. The results are measured at three levels of 

predictability: highly predictable (prediction error < 0.05), 

moderately predictable (prediction error from 0.05 to 0.3), 

and hardly predictable (prediction error from 0.3 to 0.6). 

 
For sketch and optimized motion, the trajectories 

are highly predictable except for the moment when 

the action is first initiated from a static state. Fig. 9 
shows the effect of future reference trajectories on the 

task of high kick and compares the performance of 
two policies with 2 and 16 steps of reference trajec-
tory. Zero-padding is also used in this experiment. At 
the starting point, the controller with 16 steps of fu-
ture reference trajectory takes actions earlier than the 
controller with only 2 steps of future reference tra-
jectory, making good preparation for the incoming 
high dynamic motion. The comparison of the body 
pitch angle represents the high-level tracking per-
formance in the high kick task. Since the trajectory is 
simple and highly predictable, the length of reference 
trajectory has no significant effect on high-level per-
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formance. 
 

 

Fig. 9 Detail comparison for control policy with different 

lengths of reference trajectory for the task of high kick 

from sketch. The body pitch angle and the target position 

of three actuators (the action from the policy) on the front 

right legs are shown in comparison to the reference. The 

label “short” stands for the results of the policy with 2 

steps and “long” for 16 steps. 

 
 

6  Discussion and conclusions 

 
In this paper, we present an RL-based control 

pipeline for generic motor skills for quadruped robots. 
The proposed pipeline consists of motion synthesis 
and RL-based motion imitation and uses reference 
trajectories with basic kinematics information as the 

interface between those two major modules. The 
animation state machine generates motions according 
to user commands. Motor skills from various sources, 
including motion capture, sketch, and optimization, 
can be tracked by a single RL controller, and be re-
produced on the hardware.  

The reference trajectory in the input of the con-

troller is key to the control performance. From simu-
lation experiments, we notice the ability of the con-
troller to predict future motion based on a few steps. 
This capability makes the RL controller able to work 
with very few steps of reference trajectory, a situation 
that is infeasible for MPC. The effect of the future 
reference trajectory length on control performance is 
mediated by the predictability of the trajectory. 
Longer reference trajectories lead to gains in control 
performance only when they can provide information 
that the controller cannot predict. 

Although only simple results for quadruped ro-
bots are presented, the proposed pipeline is not lim-
ited to quadruped robots, and not limited to a specific 
motion synthesis tool. In future works, it can be ex-
tended to humanoid robots and reproduce more 
complex motions with the most advanced motion 
synthesis techniques. 
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目 的：控制四足机器人实现连续、可控的多种运动 

创新点：1. 将动作生成与基于动作模仿的强化学习方法结

合，使用同一个控制器，跟踪不同运动学轨迹，

在实物机器人上实现了步态切换、高抬腿和跳跃

等不同动作。2. 提出了参考轨迹可预测性的概念，

强化学习控制器具备挖掘参考轨迹内在关联性

的能力，揭示了动作模仿中控制器输入的参考轨

迹长度对控制器性能的影响机理。 

方 法：1. 通过动作捕获、草绘与轨迹优化等方法，建立

运动轨迹数据库。2. 通过基于动作模仿的强化方

法，在仿真环境中训练控制器模仿数据库中的动

作。3. 基于控制器设计动作状态机，根据用户指

令实时生成可控的运动轨迹，作为控制器的输入，

实现对实物机器人的控制。4. 提出参考轨迹可预

测性的概念，分析参考轨迹长度对控制器性能的

影响。 

结 论：1. 本文所提出的控制方法可以在实物机器人上实

现对于多种技能的控制。2. 参考轨迹长度对控制

器性能的影响是通过可预测性实现的，对于可预

测性低的运动，可以通过补充参考轨迹长度提高

控制器性能。 

关键词：四足机器人；强化学习；动作生成；控制 
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