
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering) in press

www.jzus.zju.edu.cn; www.springer.com/journal/11582

E-mail: jzus_a@zju.edu.cn

A learning-based control pipeline for generic motor skills for

quadruped robots

Yecheng SHAO
1,2

, Yongbin JIN
1,2

, Zhilong HUANG
4
,

Hongtao WANG

1,2,3, Wei YANG
1,2

1Center for X-Mechanics, Zhejiang University, Hangzhou 310027, China
2ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
3State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China
4Institute of Applied Mechanics, Zhejiang University, Hangzhou 310027, China

Abstract: Performing diverse motor skills with a universal controller has been a longstanding challenge for legged robots. While

motion imitation-based reinforcement learning (RL) has shown remarkable performance in reproducing designed motor skills, the

trained controller is only suitable for one specific type of motion. Motion synthesis has been well developed to generate a variety

of different motions for character animation, but those motions only contain kinematic information and cannot be used for control.

In this work, we introduce a control pipeline combining motion synthesis and motion imitation -based RL for generic motor skills.

We design an animation state machine to synthesize motion from various sources and feed the generated kinematic reference

trajectory to the RL controller as part of the input. With the proposed method, we show that a single policy is able to learn various

motor skills simultaneously. Further, we notice the ability of the policy to uncover the correlations lurking behind the reference

motions to improve control performance. We analyze this ability based on the predictability of the reference trajectory and the

quantified measurements can be used to optimize the design of the controller. To demonstrate the effectiveness of our method, we

deploy the trained policy on hardware and, with a single control policy, the quadruped robot can perform various learned skills,

including automatic gait transitions, high kick, and forward jump.

Key words: Quadruped robot; Reinforcement learning; Motion synthesis; Control

1 Introduction

In recent years, learning-based control has

shown outstanding performance on quadruped robots

traversing complex terrains (Lee et al., 2020;

Siekmann et al., 2021b; Agarwal et al., 2022; Miki et

al., 2022), achieve better performance (Dao et al.,

2021; Jin et al., 2022), or perform agile skills (Huang

et al., 2022; Ji et al., 2022). Among various RL

methods, imitation-based RL is a convenient but

powerful method to obtain control policies based on

given examples. Recent works have shown many

impressive skills including high-speed running (Jin,

et al., 2022), hopping (Siekmann et al., 2020a), back-

flip (Fuchioka et al., 2022), etc. However, most of that

work focuses on standalone predefined motion clips.

Learning and switching among various skills is hard

to achieve without further modifications.

In the computer graphics community, motion

synthesis has been widely studied to generate

controllable and responsive motions for character

animation. While some researchers focus on

physics-based character animation, most of the

methods used in industry are kinematics animation.

Those well-established methods for kinematics

animation are a good starting point for motion

imitation for achieving controllable motion for

quadruped robots.

In this work, we introduce a control pipeline as a

combination of motion synthesis and motion

imitation. A series of reference trajectories serve as

the interface between those two parts. The interface

only contains basic kinematics information and thus

is compatible with all kinds of data sources, including

motion capture, sketch, and optimization. During

https://doi.org/10.1631/jzus.A2300128

Research Article

 Hongtao WANG, htw@zju.edu.cn

 Hongtao WANG, https://orcid.org/0000-0002-8258-4278

Received Mar. 19, 2023; Revision accepted June 12, 2023;

Crosschecked

© Zhejiang University Press 2023

Une
dit

ed

| J Zhejiang Univ-Sci A (Appl Phys & Eng) in press 2

training, a control policy is trained to imitate a set of

given motion clips. Based on those given motions, an

animation state machine is constructed to generate

reference trajectories for online control according to

the command from the user. We deploy the proposed

control pipeline on Unitree Go 1 and demonstrate

skills including locomotion with gait transition, high

kick, and jump, from motion capture, sketch, and

optimization, respectively. We further investigate the

effect of the length of the reference trajectories in the

interface. While longer reference trajectories can

bring better tracking performance in general, we

notice the ability of the policy to predict future steps

of the reference trajectory base on given steps. Such

ability can reduce the necessary length of the

reference trajectory, and the performance gain from

the reference trajectory is affected by the

predictability of the trajectory itself.

2 Related Work

2.1 Imitation-based reinforcement learning for

legged robots

The design of the reward function in reinforce-
ment learning is a key part that affects the final be-
havior of trained policy. Motion imitation has been
demonstrated as a powerful tool to simplify the design
of reward, which is expressed as the sum of goal
reward and imitation reward. Current methods in this
field can be divided into two categories, trajecto-
ry-based methods (Peng et al., 2018) and style-based
methods (Peng et al., 2021). Trajectory-based meth-
ods are similar to vanilla reinforcement learning. The

imitation term is calculated using the error between
the current state and the corresponding state on the
reference trajectory. In the observation space, the

reference trajectory can be either encoded as phases
or directly kept in the form of joint and base states.
Various skills including locomotion, hopping, back-
flip, etc. have been presented in previous work with

such methods (Peng et al., 2020; Siekmann, et al.,
2020a; Siekmann et al., 2020b; Siekmann et al.,
2021a; Fuchioka, et al., 2022; Jin, et al., 2022; Shao et
al., 2022). Policies with phase encoding are limited to
a certain motion or a small number of motions that

share the same encoding while, with raw joint and
base states, the policy can be applied to more tasks.

To extend to more skills, some of the research
(Siekmann, et al., 2020a; Shao, et al., 2022) uses a
shared encoding among various gaits to achieve gait

transitions, but the extensibility of those encodings is
limited. The multiplicative model (Peng et al., 2019)
can learn multiple motion clips and transfer that
learning to composite tasks but it involves a complex
model and the structure of the high-level policy is
different among various tasks. (Peng, et al., 2020)
used a series of future reference steps in the observa-
tion and held the same structure among various tasks,
but each policy only works for the corresponding
motion clip.

Style-based methods are more complex than
vanilla RL. Instead of frame-to-frame comparison, a
discriminator is used to distinguish between the re-
produced motions and the reference motions. The
imitation reward is obtained based on the discrimina-
tor. The training is done in an adversarial way. Since
such methods do not involve frame-to-frame match-
ing to the reference motion, no phase or reference
trajectory is used in the observation. Even though the

style-based reward ensures more flexibility for the
policy, seamlessly switching among various tasks
requires more effort. Compared to trajectory-based
methods, there is less work on legged robots
(Escontrela et al., 2022; Li et al., 2022; Vollenweider
et al., 2022) with style-based methods.

To extend to more skills, one-hot labels
(Vollenweider, et al., 2022) can be used to switch
among three kinds of skills. Previous research
(Escontrela, et al., 2022) shows that the simple AMP
model can learn locomotion in various gaits, but only
the velocity is controllable. Hierarchy models can be
used to mix the pre-trained skills (Peng et al., 2022),
but a task-specific high-level policy is also involved,
and currently, to the best of our knowledge, there is no
hardware transfer of this method

2.2 Character animation

In computer graphics, many techniques for

character animation have been developed in the fields
of research and industry. Character animation can be
divided into two classes, kinematics animation, which
does not consider physics laws, and physics-based
animation. Kinematics-based animation has been
widely used in production and the branch most rele-
vant to us is motion synthesis, which aims to generate
vivid and responsive motions according to user
commands, commonly based on motion capture. An-
imation state machines and motion matching (Clavet,
2016) are two popular methods in the industry, while
in the research community, many data-driven ap-
proaches have been proposed to work with a large
amount of data in more efficient ways (Holden et al.,

Une
dit

ed

J Zhejiang Univ-Sci A (Appl Phys & Eng) in press | 3

2017; Zhang et al., 2018; Starke et al., 2019; Holden
et al., 2020; Ling et al., 2020; Starke et al., 2022). On
the other hand, physics-based character animation
aims to build controllers for the character in a physics

simulation to make the animation look real (Peng, et
al., 2018; Peng, et al., 2021; Peng, et al., 2022) . The
idea of using RL-based motion imitation for legged
robots is also transferred from this area (Xie et al.,
2019; Peng, et al., 2020). However, those methods
typically focus on dealing with the physics in
low-level control, rather than high-level motion syn-
thesis compared to kinematics-based animations.

Our work can be regarded as a combination of
the above two kinds of methods and its transfer to the
robot. We build a control pipeline using the animation
state machine for motion synthesis and refer-
ence-based motion imitation for control; thus con-

trollable motions can be generated by the animation
state machine and tracked by the controller on the
robot.

3 Control Pipeline

3.1 Overview

Fig. 1 shows an overview of the proposed con-
trol pipeline. From the most abstract point of view, the
control pipeline consists of two major modules, mo-
tion generation, and motion imitation. The reference
trajectory serves as an interface across those two
parts. The motion generation module generates the

kinematic reference trajectories according to the user,
and the motion imitation module tracks them.

More precisely, it starts with a collection of de-
sired motion clips, from either motion capture, opti-

mization, or sketch. The motion clips are retargeted to
the desired quadruped robot if needed. Then, a control
policy is trained in simulation to imitate the collected
motions. When it comes to online control, an anima-
tion state machine is designed to generate controllable
motions from the dataset. With those motions orga-
nized in the same way as offline training, the robot
hardware can track those motions under the trained

control policy.

3.2 Motion capture data

An open-source motion-capture dataset for

quadruped animals (Zhang, et al., 2018) is used in this
work. Natural locomotion and gait transitions are
recorded in the dataset. The dataset was originally
collected for animation, and thus the morphology is

different from the robot, as shown in Fig. 2. The mo-
tion capture data is retargeted to the robot through
inverse kinematics (IK). Since the robot has a rigid
trunk, the position and orientation of the trunk is fitted
from four shoulders in motion capture with the least
square method. Once the trunk is fixed, the joint po-
sitions are obtained using IK by keeping four feet as
the key points, after scaling the size from animal to
robot. Due to technical limitations of motion capture,
the heights of the stance feet are often noisy, which

Fig. 1 The illustration of the overall control pipeline proposed in this work. In offline training, the policy is trained to

imitate motions from the presented dataset. For online control, a state machine is used to generate motions according to

user command based on the dataset, and the trained policy takes the generated reference trajectories as part of the input

to track the commanded motion with the hardware.

Une
dit

ed

| J Zhejiang Univ-Sci A (Appl Phys & Eng) in press 4

may confuse the controller in the following workflow.
To mitigate the effect of such noise, a thresholding
technique (Kang et al., 2021) for foot height is
adopted in pre-processing. Feet heights under the
threshold are set to zero and gradually increase to the
original values.

Fig. 2 (a) The skeleton of motion capture. Circles represent

shoulders and feet while the cuboid represents the trunk.

(b) The configuration of the robot. There are overall 12

joints and 3 for each leg. All 12 joints are actuated by mo-

tors. Blue arrows represent the directions of the joints on

one leg.

3.3 Other motions

Apart from motion capture, sketch and optimi-
zation are two other sources of reference motion. A
major advantage of motion capture is that it looks
natural, but it is hard to record the motions for certain
tasks such as the kick and jump of a quadruped ani-
mal. Compared to motion capture, sketch and opti-
mization are efficient ways to design motions. Sketch
trajectory is suitable for simple tasks. Sketch starts
from the design of an approximate trunk trajectory
and task-related foot trajectories regardless of dy-
namics, and then joint states are obtained through IK.
For highly dynamic tasks, the sketched trajectories
may be too far from the dynamically feasible trajec-
tories and be hard to reproduce even in simulation.
For trajectory optimization, the solution satisfies
constraints from the approximated robot dynamics
determined by the model. Such optimized trajectories
are better references for highly dynamic tasks, com-
pared to sketch trajectories without any dynamic
constraints.

3.4 Animation state machine

The animation state machine is a popular ap-
proach for character animation in the field of com-
puter graphics. The animation is broken down into
several states and transitions, and each has a corre-
sponding motion clip. With a set of transition rules,
the character may transit from one state to another, or
stay in the current state, according to the command

from the user. In the meanwhile, the corresponding
motion clips are played one by one, resulting in the
controllable animation shown on the screen.

To achieve controllable locomotion, nine states
are defined by traversing three levels of forward ve-
locities (stand, slow speed, fast speed) and three
moving directions (forward, left, and right). All
pairwise transitions among all the locomotion states
are allowed and the corresponding motion clips are
extracted from the dataset. The rules for gait transi-
tions are automatically included here. For sketched
and optimized motions, only transitions between task
motion and the standing state are allowed. The robot
in locomotion states can first stop to the standing state
and then transit into the task motion, since designing
direct transitions between locomotion and special
tasks is tedious and less necessary.

3.5 Sim-to-real reinforcement learning

The policy is trained in simulation and trans-
ferred to the robot hardware. The policy is trained to
imitate the given motion while satisfying the rules of
physics and other constraints defined in the simulator.

The overall control architecture is illustrated in
Fig. 3 and the control policy in RL is formulated in the
same way. The observation of the policy is 𝑿 =

{𝒒𝑗 , 𝒒̇𝑗 , 𝒒̇𝑏𝑅
, 𝒓𝑔, 𝒙𝑡:𝑡+𝑁

𝑟𝑒𝑓 } ∈ ℝ30+19𝑁 and can be divid-

ed into two categories. The first part is the state of the
robot, including the positions and velocities of 12
joints and the orientation and angular velocities of the
trunk. The second part is a series of reference trajec-

tories starting from the next step. 𝒙𝑡
𝑟𝑒𝑓 =

{𝒗, 𝒓̂𝑔, ℎ̂, 𝑞̂𝑗 } ∈ ℝ19 represents the reference motion at

𝑡 step. Velocity, body orientation, height, and joint
positions are included in the observation as a de-
scription of the imitation task. The effect of these
trajectories is discussed in section IV. Detailed de-
scription of the notions can be found in Table 1.

Fig. 3 The control architecture of the proposed method.

The colors of the arrows stand for the frequency, and the

command for motion generation is not required to be up-

dated at a specific frequency.

Une
dit

ed

J Zhejiang Univ-Sci A (Appl Phys & Eng) in press | 5

The action of the policy is 𝒒𝑗
𝑑𝑒𝑠 ∈ ℝ12 , followed

by a PD controller to obtain the final low-level torque

command. Long short-term memory (LSTM) neural
network is used as the policy due to its ability to

capture historical information during dynamic pro-
cesses (Siekmann, et al., 2020b).

The reward design is like many previous works
using motion imitation. It is a weighted sum of several
terms:
𝑟 = 0.2𝑟𝑣 + 0.1𝑟𝑕 + 0.1𝑟𝑏 + 0.2𝑟𝜏 + 0.4𝑟𝑗#(1)

𝑟𝑣 = exp(−8‖𝒒̇𝑏 − 𝒗‖2) #(2)

𝑟𝑕 = exp (−80‖𝑞𝑏𝑧
− ℎ̂‖

2
) #(3)

𝑟𝑏 = exp (−80‖𝒓𝑔 − 𝒓̂𝑔‖
2
) #(4)

𝑟𝜏 = 0.5 exp(−‖0.05𝝉‖2) + 0.5 exp(−‖0.5𝝉̇‖2) #(5)

𝑟𝑗 = 0.25 exp (−2‖Δ𝒒𝑗‖
2
)

+0.75 exp (−2‖Δ𝒒̇𝑗‖
2
) #(6)

𝑟𝑗 encourage the policy to track the reference trajec-

tories at joint level and is the major part during learn-
ing. 𝑟𝑣 , 𝑟𝑕 and 𝑟𝑏 reward the policy for following the

velocities, height, and posture of the trunk, respec-
tively. Those are the tracking task at high level. 𝑟𝜏

penalizes the large or rapid torque command for the
joints, which is undesired in the hardware.

For each rollout, the reference state initialization
(RSI) technique (Peng, et al., 2018) is used to initiate
the robot at a random timestep on the reference tra-
jectory. To accelerate training, fixed trajectories
sampled from the dataset are used rather than synthe-
sis motion. Early termination (Peng, et al., 2018) is
also used to stop the rollout when the robot falls, or
the state is too far from the reference trajectory. For
sim-to-real, domain randomization is adopted to
minimize the gap between simulation and real world
and prevent overfitting. For the robot, manufactory
errors are simulated by randomizing the dynamics
and geometric sizes around the designed values. For
the ground, a wide range of friction coefficients is
used for different rollouts to simulate various ground
conditions. Random external forces and torques are
applied to the robots, and stochastic errors are added

to the observations according to the accuracy of the
sensors of the robot. Details on domain randomization
can be found in Table 2.

Table 1 Notions for Model Representation

Notion Dimension Description

𝒒𝑗 12 Joint positions.

𝒒̇𝑗 12 Joint velocities.

𝒒̇𝑏𝑅
 3 Angular velocities of the trunk.

𝒓𝑔 3
Angular positions of the trunk, represented by the components of the gravity direction in the

trunk frame.

𝒙𝑡:𝑡+𝑁
𝑟𝑒𝑓

 19𝑁 𝑁 steps of future reference trajectories.

𝒗̂ 3 The velocity of the reference state in the forward, lateral, and yaw directions.

𝒓̂𝑔 3 The angular position of the trunk of the reference state, in the same representation as 𝒓𝑔

ℎ̂ 1 The trunk height in the reference.

𝒒̂𝑗 12 The joint positions of the reference state.

𝒒𝑗
𝑑𝑒𝑠 12 The desired joint position.

Table 2 Domain Randomization

Term Unit Distribution

Mass for each part kg 𝒩(1.0, 0.05) × origin values

Geometric size m 𝒩(1.0, 0.05) × origin values

Ground friction - 𝒰(0.4, 1.2)

Joint position noise rad 𝒩(0.0,0.002)

Joint velocity noise rad/s 𝒩(0.0,0.3)

Body posture noise rad 𝒩(0.0,0.1)

Angular velocity noise rad 𝒩(0.0,0.3)

4 Future Reference Trajectory

In the problem of optimal control, the target

functional consists of costs at the endpoints and along
the whole process. The specific design of the target
functional varies among different tasks, but in refer-

ence tracking tasks, the most common costs consist of
the tracking errors against the reference and actuation
costs. Model predictive control (MPC) solves the
optimal control problem repeatedly using the latest
state and performs the latest output of the optimal
control problem. In the tracking problem, each time

Une
dit

ed

| J Zhejiang Univ-Sci A (Appl Phys & Eng) in press 6

MPC updates, a slide window of future reference
trajectory is fetched, and new results are obtained
with regard to the new measurements and the refer-
ence. To this end, the problems of MPC and RL are in
the same formulation, both obtaining commands
based on the current state and a slice of future refer-
ence trajectory, and both optimizing tracking errors
and actuation costs.

The major difference is that MPC is based on
online optimization while RL is based on offline op-
timization. As an online optimization approach, MPC
itself does not contain any prior knowledge of the
reference motion. The length of the reference trajec-
tory and the prediction horizon must be the same to
formulate the target functional. Usually, the predic-
tion horizon and the updating frequency are a
trade-off limited by the onboard computational pow-
er. A longer prediction horizon will bring a larger
calculation burden, while a shorter one will harm the

quality of the results. As an offline optimization ap-
proach, the RL policy can gain knowledge about the
trained reference dataset. With this knowledge, the
policy can predict later parts of the trajectories based
on the given ones and is able to work with very few
steps of reference trajectory without worrying about
performance.

The task of prediction is fitting a dataset like

{(𝒙𝑡−𝑁:𝑡
𝑟𝑒𝑓 , 𝒙𝑡:𝑡+𝑀

𝑟𝑒𝑓), … }, and thus the capability of pre-

diction is determined by the correlation inside the
dataset, or the mutual information between previous
steps and later steps, instead of the policy. For trajec-
tories with a strong correlation between the adjacent
data before and after, the policy can predict longer
later trajectory based on a few steps of the given tra-

jectory. For example, for periodic motions, the policy

can memorize the whole trajectory and identify the
current position on it to achieve a completely accurate
prediction. For trajectories with weak correlation,

such as unexpected transitions, the policy is unable to
predict future changes based on given steps, and thus
more steps are required to complete the necessary
information. Otherwise, a degradation in performance
will appear. For a dataset with many trajectories, the
overall correlation, or the predictability, also depend
on those trajectories within this dataset. The correla-
tion tends to be strong when a set of simple and dis-
similar trajectories are included in the dataset and
tends to be weak in the case of complex and similar
trajectories. The prediction ability only applies to the
learned dataset and has no contribution to trajectories
completely out of the distribution, like many other
machine learning problems. However, since the pro-
posed method only uses learned motions in the con-
trol pipeline, this limitation can be ignored in our
work, along with the issue of overfitting.

5 Results

To demonstrate the efficiency of our control
pipeline, the control policy is trained in simulation
and then deployed on the hardware of Unitree Go 1.
The agent is trained to imitate motions from motion
capture, sketch, and optimization simultaneously.
Similar performances are observed on both simula-
tion and hardware. This section first demonstrates
three sorts of learned motions on hardware, as shown
in supplementary videos 1-4. All the skills are con-
trolled by the same policy, as shown in the supple-
mentary 5. The policy can achieve similar perfor-
mance when learning multiple skills and single skills.
Besides, we evaluate the role of the future reference
trajectories by detailed analysis on data from simula-
tion.

5.1 Experimental setup Une
dit

ed

J Zhejiang Univ-Sci A (Appl Phys & Eng) in press | 7

The control policy used in this section is trained
in simulation. RaiSim (Hwangbo et al., 2018) is used
as the physics engine, with an LSTM neural network
composed of two hidden layers of 64 units in each.
The PPO algorithm (Schulman et al., 2017) imple-
mented by the stable-baselines (Hill et al., 2018)
package is used for training. Similar to previous work
(Shao, et al., 2022), the standard deviation of the
action distribution is trainable and initialized at 1.0
but ended at 0.1 to keep the exploration field at a
reasonable scale in the late stage of the training pro-
cess. The policy is designed to work at 100 Hz while
the physics engine works at a higher frequency of 400
Hz. On a workstation with Intel Xeon E5-2296v4
CPU and GTX 1080Ti GPU, the policy converges in
about 3 h. For deployment, the LSTM policy is
re-implemented with C++ and Eigen. The policy can
run at 100 Hz as designed both on a small PC with
i5-1135G7 and Raspberry 3 on Unitree Go 1.

5.2 Controllable locomotion with gait transitions

The proposed control pipeline is deployed on the
hardware as a validation of the overall method. In this
sub-section, we evaluate the control performance to
track commanded locomotion with gait transitions.
Fig. 5a shows the experiment of command tracking
on the hardware. The animation state machine gener-
ates reference motion for turning in changing direc-
tion according to user command, and the robot can
follow those commands with the policy. More results
of command tracking on the hardware can be found in
the supplementary video 1. Fig. 4 shows the results of
gait transition among stand, trot, and pace, sequen-
tially. The animation state machine extracts the rules
for gait transitions from motion capture data and re-
produces those transitions automatically according to
the speed command. For rapid starts from the stand-

Fig. 4 The locomotion contains stance, trot gait, and pace gait sequentially. (a) The comparison between the synthesized

motion and the controlled hardware. (b) The comparison of forward trunk velocity between the robot and the reference

motion from simulation. (c) The results of the foot contact sequence of the robot. The cyan blocks represent the actual

contact status and the curves represent the height of four feet in the reference.

Une
dit

ed

| J Zhejiang Univ-Sci A (Appl Phys & Eng) in press 8

ing state, animals tend to use trot gait, in which the
movements of diagonal legs are approximately in
sync, and for low-speed locomotion, animals tend to
use pace gait, in which the movements of legs on the
same lateral side are in sync. With our controller, the
natural gait transitions are carried out on the robot.
Besides, Fig. 4 also presents the velocity and foot
contact sequence, which are both major characteris-
tics of the animation. The data from simulation shows
that the robot can track the reference velocities well
and reproduce the same gaits as the animation.
Hardware experiments for gait transition can be found
in supplementary video 2.

5.3 Motion from sketch and optimization

In addition to motion synthesis, motions from
sketch and optimization are also learned and deployed
on the hardware. For sketch motion, the robot is de-

signed to raise the body in pitch direction up to 40°
and use one of the forelegs to reach a target height up

to 50 cm. The reference motion is a manually scripted
kinematics trajectory without physics constraints. For
optimization, the robot is designed to jump forward in
0.45 m. Floating base model and direct collation
methods are used for numerical optimization. The
optimized trajectory is dynamically feasible but

open-loop. Fig. 5 shows some snapshots for the
hardware experiments, demonstrating the effective-
ness of our approach. As mentioned above, the con-
trol policy for those two tasks is the same one as the
previous subsection. More detailed results can be
found in the supplementary video.

Fig. 6 Hardware experiment for (a) command tracking

from motion capture, (b) high kick from sketch, and (c)

forward jump from optimization.

5.4 Learning Performance

Reference trajectories from sketch and motion

capture are kinematical trajectories and cannot be
used for control directly. The solution of trajectory
optimization contains dynamic information but is
open-loop and based on a simplified mode. The pro-
posed method can form a dynamic-feasible close-loop
controller for all three types of skills based on those
inaccurate trajectories. Fig. 6 shows the learning per-
formance for multiple skills and a single skill. Com-
pared to policies for a specific skill, the policy trained
for all three types of skills can achieve similar per-
formance for each skill. Learning multiple skills only

Fig. 5 Comparison for learning curves for multiple-skill policy and single-skill policy. (a) Performance for jump task. (b)

Performance for kick task. (c) Performance for locomotion task.

Une
dit

ed

J Zhejiang Univ-Sci A (Appl Phys & Eng) in press | 9

slows down the learning speed but does not com-
promise the final performance.

5.5 The effect of future reference trajectory

Since it is very difficult to directly measure the
correlation among high-dimensional data, a neural
network is used to describe the predictability of the
reference trajectory. The neural network fits the da-

taset using the first N steps of the reference trajectory
as input and the last M steps as output. The specific
behavior of this ad hoc neural network is not identical
to the controller, and the prediction model itself has
no effect on control performance. However, the pre-
diction error from the neural network can be treated as
a semi-quantitative indicator of the predictability on a
certain interval of the trajectory. To fully reflect the
correlation among reference trajectories, the model is
tuned to best accuracy. For illustration, a multi-layer
preceptor is trained to predict the next 30 steps based
on 2 steps, and the prediction error and results for the
reference trajectory used in Fig. 4 are shown in Fig. 7.
For common gaits, e.g., at t=7 s or t=13 s, the predic-
tion error is low, and the trained MLP can accurately
predict the future time steps, as shown in Fig. 7b. In
the standing state, the prediction error is even lower.

However, during gait transitions, the prediction error
rises, corresponding to low predictability, and the
prediction results of t=9.9 s are shown in Fig. 7c as an
example. The MLP can no longer predict future ref-
erence trajectories accurately.

To evaluate the effect of the predictability of the
trajectory on the final control performance, control-
lers with different numbers of steps in the input are

trained for comparison. The zero-padding technique
is used to keep all controllers in the same structure.
For control policies with less than 32 steps of refer-
ence trajectories, the additional dimensions are set to
zero. Fig. 8 shows the root mean squared error

(RMSE) of velocities, joint positions, and body pos-
ture of different lengths of reference trajectories at
different levels of predictability in locomotion tasks.
The velocity error stands for the performance of
command tracking, which is the major performance
indicator in locomotion tasks. It is not affected by the
length of the reference trajectory in highly predictable
cases like periodic motions, while in cases with a low
level of predictability like gait transitions and velocity
changing, there is a significant decrease in tracking
errors as the length of the reference trajectory in-
creases. The joint position error represents the simi-
larity between the reproduced motion and the refer-
ence motion. The similarity slightly increases as the

Fig. 7 Illustration for the measurement of predictability. (a) The prediction error over time in the task from stance to trot

gait and ending in pace gait. The first transition is around t=5 s and the second is around t=10 s. The positions of the

abductor, hip, and knee joints of the front right leg are selected to illustrate the comparison of the predicted trajectory and

the original trajectory at (b) t=13.41 s and (c) t=9.92 s, as examples of periodic motions and transitions, respectively.

Une
dit

ed

| J Zhejiang Univ-Sci A (Appl Phys & Eng) in press 10

length of the reference trajectory increases regardless
of predictability. The body posture error measures the
difference of the attitude between reproduced motion
and reference motion; it can be obtained through
Δ𝜃 = 𝒓𝑔 ⋅ 𝒓̂𝑔, in which 𝒓𝑔 represents the actual body

posture and 𝒓̂𝑔r the reference trajectories. There is no

significant effect on the balance of the robot from the
length of reference trajectory or the level of predict-
ability in the test cases because the variation of body
posture on the dataset of locomotion is small com-
pared to joint position and velocity. Overall, the sta-
tistical results show that for trajectories that can be
easily predicted, longer reference trajectory in input
has no contribution to the control performance. The
controller itself can learn to predict the future trajec-
tory and take actions according to a long reference
trajectory. For unpredictable motions, like sudden
start or gait transitions, the controller can no longer
predict the future reference trajectory. Controllers
with less reference trajectory can only act according
to the given length of reference or on some incorrect
guesses, resulting in poor control performances, in-
cluding large tracking errors or unsteady body pos-
ture.

Fig. 8 The effect of the length of the reference trajectory on

(a) velocity error, (b) joint position error, and (c) body

posture error. The results are measured at three levels of

predictability: highly predictable (prediction error < 0.05),

moderately predictable (prediction error from 0.05 to 0.3),

and hardly predictable (prediction error from 0.3 to 0.6).

For sketch and optimized motion, the trajectories

are highly predictable except for the moment when

the action is first initiated from a static state. Fig. 9
shows the effect of future reference trajectories on the

task of high kick and compares the performance of
two policies with 2 and 16 steps of reference trajec-
tory. Zero-padding is also used in this experiment. At
the starting point, the controller with 16 steps of fu-
ture reference trajectory takes actions earlier than the
controller with only 2 steps of future reference tra-
jectory, making good preparation for the incoming
high dynamic motion. The comparison of the body
pitch angle represents the high-level tracking per-
formance in the high kick task. Since the trajectory is
simple and highly predictable, the length of reference
trajectory has no significant effect on high-level per-

Une
dit

ed

J Zhejiang Univ-Sci A (Appl Phys & Eng) in press | 11

formance.

Fig. 9 Detail comparison for control policy with different

lengths of reference trajectory for the task of high kick

from sketch. The body pitch angle and the target position

of three actuators (the action from the policy) on the front

right legs are shown in comparison to the reference. The

label “short” stands for the results of the policy with 2

steps and “long” for 16 steps.

6 Discussion and conclusions

In this paper, we present an RL-based control

pipeline for generic motor skills for quadruped robots.
The proposed pipeline consists of motion synthesis
and RL-based motion imitation and uses reference
trajectories with basic kinematics information as the

interface between those two major modules. The
animation state machine generates motions according
to user commands. Motor skills from various sources,
including motion capture, sketch, and optimization,
can be tracked by a single RL controller, and be re-
produced on the hardware.

The reference trajectory in the input of the con-

troller is key to the control performance. From simu-
lation experiments, we notice the ability of the con-
troller to predict future motion based on a few steps.
This capability makes the RL controller able to work
with very few steps of reference trajectory, a situation
that is infeasible for MPC. The effect of the future
reference trajectory length on control performance is
mediated by the predictability of the trajectory.
Longer reference trajectories lead to gains in control
performance only when they can provide information
that the controller cannot predict.

Although only simple results for quadruped ro-
bots are presented, the proposed pipeline is not lim-
ited to quadruped robots, and not limited to a specific
motion synthesis tool. In future works, it can be ex-
tended to humanoid robots and reproduce more
complex motions with the most advanced motion
synthesis techniques.

Acknowledgments

Z.L. Huang acknowledges the support from the Natural

Science Foundation of China (Grant No. 12132013).

Author contributions

W. Yang and H. T. Wang initiated the project. H. T. Wang

created the experimental protocols. Y.C. Shao did the exper-

iments and processed the corresponding data. H.T. WANG

organized the manuscript, revised and edited the final version.

All authors contributed to the discussion.

Conflict of interest
All authors declare that they have no conflict of interest.

References
Agarwal A, Kumar A, Malik J, et al., 2022. Legged locomotion

in challenging terrains using egocentric vision.

Conference on Robot Learning,

Clavet S, 2016. Motion matching and the road to next-gen

animation. Game Developers Conference,

Dao J, Duan H, Green K, et al., 2021. Pushing the limits :

Running at 3 . 2m / s on cassie. Dynamic Walking

Meeting, p.2021.

Escontrela A, Peng XB, Yu W, et al., 2022. Adversarial motion

priors make good substitutes for complex reward

functions. 2022 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), arXiv,

https://doi.org/10.1109/IROS47612.2022.9981973

Fuchioka Y, Xie Z, Van De Panne M, 2022. Opt-mimic:

Imitation of optimized trajectories for dynamic

quadruped behaviors. 2023 International Conference on

Robotics and Automation (ICRA), arXiv,

Hill A, Raffin A, Ernestus M, et al., 2018. Stable baselines.

Une
dit

ed

https://doi.org/10.1109/IROS47612.2022.9981973

| J Zhejiang Univ-Sci A (Appl Phys & Eng) in press 12

Holden D, Komura T, Saito J, 2017. Phase-functioned neural

networks for character control. ACM Trans. Graph.,

39(2):491-533.

Holden D, Kanoun O, Perepichka M, et al., 2020. Learned

motion matching. ACM Transactions on Graphics, 39(4)

https://doi.org/10.1145/3386569.3392440

Huang X, Li Z, Xiang Y, et al., 2022. Creating a dynamic

quadrupedal robotic goalkeeper with reinforcement

learning. arXiv:2210.04435,

Hwangbo J, Lee J, Hutter M, 2018. Per-contact iteration

method for solving contact dynamics. IEEE Robotics and

Automation Letters, 3(2):895-902.

Ji G, Mun J, Kim H, et al., 2022. Concurrent training of a

control policy and a state estimator for dynamic and

robust legged locomotion. IEEE Robotics and

Automation Letters,

https://doi.org/10.1109/LRA.2022.3151396

Jin Y, Liu X, Shao Y, et al., 2022. High-speed quadrupedal

locomotion by imitation-relaxation reinforcement

learning. Nature Machine Intelligence, 4(12):1198-1208.

https://doi.org/10.1038/s42256-022-00576-3

Kang D, Zimmermann S, Coros S, 2021. Animal gaits on

quadrupedal robots using motion matching and

model-based control. IEEE International Conference on

Intelligent Robots and Systems, :8500-8507.

https://doi.org/10.1109/IROS51168.2021.9635838

Lee J, Hwangbo J, Wellhausen L, et al., 2020. Learning

quadrupedal locomotion over challenging terrain. Science

Robotics, 5(47)

https://doi.org/10.1126/scirobotics.abc5986

Li C, Vlastelica M, Blaes S, et al., 2022. Learning agile skills

via adversarial imitation of rough partial demonstrations.

CoRL 2022, arXiv,

Ling HY, Zinno F, Cheng G, et al., 2020. Character controllers

using motion vaes. ACM Transactions on Graphics, 39(4)

https://doi.org/10.1145/3386569.3392422

Miki T, Lee J, Hwangbo J, et al., 2022. Learning robust

perceptive locomotion for quadrupedal robots in the wild.

Science Robotics, 7(62):eabk2822.

https://doi.org/10.1126/scirobotics.abk2822

Peng XB, Abbeel P, Levine S, et al., 2018. Deepmimic:

Example-guided deep reinforcement learning of

physics-based character skills. ACM Trans. Graph.,

37(4):143:141--143:114.

https://doi.org/10.1145/3197517.3201311

Peng XB, Chang M, Zhang G, et al., 2019. Mcp: Learning

composable hierarchical control with multiplicative

compositional policies. NeurIPS, p.1-21.

Peng XB, Coumans E, Zhang T, et al., 2020. Learning agile

robotic locomotion skills by imitating animals.

https://doi.org/10.15607/RSS.2020.XVI.064

Peng XB, Ma Z, Abbeel P, et al., 2021. Amp: Adversarial

motion priors for stylized physics-based character

control. ACM Transactions on Graphics, 40(4)

https://doi.org/10.1145/3450626.3459670

Peng XB, Guo Y, Halper L, et al., 2022. Ase: Large-scale

reusable adversarial skill embeddings for physically

simulated characters. ACM Transactions on Graphics,

41(4):1-17. https://doi.org/10.1145/3528223.3530110

Schulman J, Wolski F, Dhariwal P, et al., 2017. Proximal

policy optimization algorithms. arXiv:1707.06347,

Shao Y, Jin Y, Liu X, et al., 2022. Learning free gait transition

for quadruped robots via phase-guided controller. IEEE

Robotics and Automation Letters, 7(2):1230-1237.

https://doi.org/10.1109/LRA.2021.3136645

Siekmann J, Godse Y, Fern A, et al., 2020a. Sim-to-real

learning of all common bipedal gaits via periodic reward

composition. arXiv:2011.01387,

Siekmann J, Valluri S, Dao J, et al., 2020b. Learning

memory-based control for human-scale bipedal

locomotion. arXiv:2006.02402,

Siekmann J, Godse Y, Fern A, et al., 2021a. Sim-to-real

learning of all common bipedal gaits via periodic reward

composition. arXiv:2011.01387,

Siekmann J, Green K, Warila J, et al., 2021b. Blind bipedal

stair traversal via sim-to-real reinforcement learning.

https://doi.org/10.15607/rss.2021.xvii.061

Starke S, Zhang H, Komura T, et al., 2019. Neural state

machine for character-scene interactions. ACM

Transactions on Graphics, 38(6)

https://doi.org/10.1145/3355089.3356505

Starke S, Mason I, Komura T, 2022. Deepphase: Periodic

autoencoders for learning motion phase manifolds. ACM

Transactions on Graphics, 41(4):1-13.

https://doi.org/10.1145/3528223.3530178

Vollenweider E, Bjelonic M, Klemm V, et al., 2022. Advanced

skills through multiple adversarial motion priors in

reinforcement learning. arxiv:2203.14912,

Xie Z, Clary P, Dao J, et al., 2019. Learning locomotion skills

for cassie: Iterative design and sim-to-real. Conference on

Robot Learning, (CoRL)

Zhang H, Starke S, Komura T, et al., 2018. Mode-adaptive

neural networks for quadruped motion control. ACM

Transactions on Graphics, 37(4):1-11.

https://doi.org/10.1145/3197517.3201366

Electronic supplementary materials
Video S1 Command tracking

Video S2 Automatic gait transition

Video S3 High kick

Video S4 Forward Jump

Video S5 Switch among skills

中文概要

题 目：基于学习的四足机器人通用技能控制方法

作 者：邵烨程
1,2
，金永斌

1,2
，黄志龙

4
，王宏涛

1,2,3
，杨

卫
1,2

Une
dit

ed

https://doi.org/10.1145/3386569.3392440
https://doi.org/10.1109/LRA.2022.3151396
https://doi.org/10.1038/s42256-022-00576-3
https://doi.org/10.1109/IROS51168.2021.9635838
https://doi.org/10.1126/scirobotics.abc5986
https://doi.org/10.1145/3386569.3392422
https://doi.org/10.1126/scirobotics.abk2822
https://doi.org/10.1145/3197517.3201311
https://doi.org/10.15607/RSS.2020.XVI.064
https://doi.org/10.1145/3450626.3459670
https://doi.org/10.1145/3528223.3530110
https://doi.org/10.1109/LRA.2021.3136645
https://doi.org/10.15607/rss.2021.xvii.061
https://doi.org/10.1145/3355089.3356505
https://doi.org/10.1145/3528223.3530178
https://doi.org/10.1145/3197517.3201366

J Zhejiang Univ-Sci A (Appl Phys & Eng) in press | 13

机 构：
1
浙江大学，交叉力学中心，中国杭州，310027；

2
浙江大学，杭州国际科创中心，中国杭州，310027；

3
浙江大学，流体动力与机电系统国家重点实验室，

中国杭州，310027；
4
浙江大学，应用力学研究所，中国杭州，310027

目 的：控制四足机器人实现连续、可控的多种运动

创新点：1. 将动作生成与基于动作模仿的强化学习方法结

合，使用同一个控制器，跟踪不同运动学轨迹，

在实物机器人上实现了步态切换、高抬腿和跳跃

等不同动作。2. 提出了参考轨迹可预测性的概念，

强化学习控制器具备挖掘参考轨迹内在关联性

的能力，揭示了动作模仿中控制器输入的参考轨

迹长度对控制器性能的影响机理。

方 法：1. 通过动作捕获、草绘与轨迹优化等方法，建立

运动轨迹数据库。2. 通过基于动作模仿的强化方

法，在仿真环境中训练控制器模仿数据库中的动

作。3. 基于控制器设计动作状态机，根据用户指

令实时生成可控的运动轨迹，作为控制器的输入，

实现对实物机器人的控制。4. 提出参考轨迹可预

测性的概念，分析参考轨迹长度对控制器性能的

影响。

结 论：1. 本文所提出的控制方法可以在实物机器人上实

现对于多种技能的控制。2. 参考轨迹长度对控制

器性能的影响是通过可预测性实现的，对于可预

测性低的运动，可以通过补充参考轨迹长度提高

控制器性能。

关键词：四足机器人；强化学习；动作生成；控制

Une
dit

ed

